Open Access Open Access  Restricted Access Subscription or Fee Access

Use of Black Soldier Fly (BSF) for the Treatment of the Cancer in Rat, Rattus norvegicus (L)

Vitthalrao Bhimasha Khyade, Rajkumar V. Bajolge, Pratiksha Dhananjay Patil, Nilam Dilip Warale

Abstract


The death-dealing cancer and the most frequent cancer in human population is the cancer of colon. Drug resistance capabilities and scarcity of effective drug are supposed to be the obstacles in the method of treatment for cancer of colon. The methanol solution (100 ppm) maceratives of pre-pupal stages of BSF Hermetia illucens (L.) and zingiberene (Terpene of “Monocyclic-Sesquiterpene” class), significant constituent of Zingiber officinale (L.) were assessed for treating the cells of cancer of the colon, belong to Norwegian rat, Rattus norvegicus (L). The cell counting assay was utilized for assessment of rate of proliferation of the cells of colon cancer. Autophagy was detected by using of transmission electron microscopy (TEM). The varied concentrations of monocyclic-sesquiterpene, zingiberene and the methanol maceratives of pre-pupal stages of BSF Hermetia illucens (L.) used for treating the “Transfected cells” derived from rat colon include: 100.00, 150.00 and 200.00 µl. The fluorescent microscopy was utilized for monitoring. The cell cycle was analysed using the flow cytometry. Expression of the protein was carried out through the immunoblotting. The zingiberene (Terpene of “Monocyclic-Sesquiterpene” class), significant constituent of Zingiber officinale (L.) and the methanol maceratives of pre-pupal stages of BSF Hermetia illucens (L.) were found considerably inhibiting the proliferation of cancer cells of colon from Norwegian rat, Rattus norvegicus (L). The zingiberene and the contents of the macceratives of BSF are responsible for the purpose to induce the autophagy in present attempt. This treatment may be responsible for inhibition of growth of cancer cells in the colon of Norwegian rat, Rattus norvegicus (L). The methanol maceratives of pre-pupal stages of BSF Hermetia illucens (L.) may be utilized for establishment of therapy to control the cancer of colon.


Full Text:

PDF

References


Butler MS. Natural products to drugs: natural product derived compounds in clinical trials. NAT Prod Rep 2008; 25:475-516.

Cragg GM, Newman DJ. Antineoplastic agents from natural sources: Achievements and future directions. Expert Opin Investig Drugs 2000; 9:2783-97.

Balandrin MF, Klocke JA, Wurtele ES, Bollinger WH. Natural plant chemicals: sources of industrial and medicinal materials. Science 1985; 228:1154-60.

Zhang S, Won YK, Ong CN, Shen HM. Anti-cancer potential of sesquiterpene lactones: bioactivity and molecular mechanisms. Cur Med Chem Anticancer Agents 2005; 5:239-49.

Kreuger MR, Grootjans S, Biavatti MW, Vandenabeele P, D’Herde K. Sesquiterpene lactones as drugs with multiple targets in cancer treatment: focus on parthenolide. Anticancer Drugs 2012; 23:883-96.

Ghantous A, Gali-Muhtasib H, Vuorela H, Saliba NA, Darwiche N. What made sesquiterpene lactones reach cancer clinical trials?. Drug Discov Today 2010; 15:668- 78.

Millar JG. Rapid and simple isolation of zingiberene from ginger essential oil. J Nat Prod 1998; 61:1025- 6.

Habib SH, Makpol S, Hamid NA, Das S, Ngah WZ, Yusof YA. Ginger extract (Zingiber officinale) has anti-cancer and anti-inflammatory effects on ethionine-induced hepatoma rats. Clinics 2008;63: 807-13.

Rivenbark, A. G. and Coleman, W. B. (2014). An Introduction to the Conspicuous and Distinguishing Characteristics of Neoplasms. in Pathobiology of Human Disease, 2014A Dynamic Encyclopedia of Disease Mechanisms 2014, Pages 349-366. https://www.sciencedirect.com/science/article/pii/B9780123864567019018.

Miyata M; Furukawa M; Takahashi K; Gonzalez FJ; Yamazoe Y (2001). "Mechanism of 7, 12- Dimethylbenz[a]anthracene-Induced Immunotoxicity: Role of Metabolic Activation at the Target Organ". Jpn J Pharmacol. 86: 302– 309. doi:10.1254/jjp.86.302.

Sung YM; He G; Fischer, SM (2005). "Lack of Expression of the EP2 but not EP3 Receptor for Prostaglandin E2 Results in Suppression of Skin Tumor Development". Cancer Res. 65: 9304– 9311. doi:10.1158/0008-5472. can- 05-1015. FAO. The State of World Fisheries and Aquaculture 2020; FAO: Rome, Italy, 2020; ISBN 978-92-5-132692-3.

Herrero, M.; Wirsenius, S.; Henderson, B.; Rigolot, C.; Thornton, P.; Havlík, P.; de Boer, I.; Gerber, P.J. (2015). Livestock and the environment: What have we learned in the past decade? Annu. Rev. Environ. Resour. 2015, 40, 177–202.

Herrero, M.; Henderson, B.; Havlík, P.; Thornton, P.K.; Conant, R.T.; Smith, P.; Wirsenius, S.; Hristov, A.N.; Gerber, P.; Gill, M. (2016). Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Chang. 2016, 6, 452–461.

Kanianska, R. (2016). Agriculture and its impact on land-use, environment, and ecosystem services. Landscape Ecology— The Influences of Land Use and Anthropogenic Impacts of Landscape Creation. Kanianska, R., Ed.; Slovakia. 2016, pp. 1–26. https://www.intechopen.com/books/landscape-ecology-the-influences-of-land-useand-anthropogenic-impacts-of-landscape-creation/agriculture-and-its-impact-on-land-use-environment-andecosystem-services.

Ziolkowska, J. (2017). Economic and environmental costs of agricultural food losses and waste in the US. ETP Int. J. Food Eng. 2017.

Liceaga, A.M. Approaches for utilizing insect protein for human consumption: Effect of enzymatic hydrolysis on protein quality and functionality. Ann. Entomol. Soc. Am. 2019, 112, 529–532.

Anaya, J.-M.; Shoenfeld, Y.; Rojas-Villarraga, A.; Levy, R.A.; Cervera, R. Autoimmunity: From Bench to Bedside; El Rosario University Press: Bogota, Colombia, 2013; ISBN 9587383664.

Omotoso, O.T. Nutritional quality, functional properties and anti-nutrient compositions of the larva of Cirina forda (Westwood) (Lepidoptera: Saturniidae). J. Zhejiang Univ. Sci. B 2006, 7, 51–55.

Van Huis, A. Potential of insects as food and feed in assuring food security. Annu. Rev. Entomol. 2013, 58, 563–583.

Borremans, A.; Bußler, S.; Sagu, S.T.; Rawel, H.; Schlüter, O.K.; Leen, V.C. Effect of Blanching Plus Fermentation on Selected Functional Properties of Mealworm (Tenebrio molitor) Powders. Foods 2020, 9, 917.

Ovissipour, M.; Rasco, B.; Shiroodi, S.G.; Modanlow, M.; Gholami, S.; Nemati, M. Antioxidant activity of protein hydrolysates from whole anchovy sprat (Clupeonella engrauliformis) prepared using endogenous enzymes and commercial proteases. J. Sci. Food Agric. 2013, 93, 1718–1726.

Hall, F.G.; Jones, O.G.; O’Haire, M.E.; Liceaga, A.M. Functional properties of tropical banded cricket (Gryllodes sigillatus) protein hydrolysates. Food Chem. 2017, 224, 414–422.

Purschke, B.; Meinlschmidt, P.; Horn, C.; Rieder, O.; Jäger, H. Improvement of techno-functional properties of edible insect protein from migratory locust by enzymatic hydrolysis. Eur. Food Res. Technol. 2018, 244, 999–1013.

Tang, Y.; Debnath, T.; Choi, E.-J.; Kim, Y.W.; Ryu, J.P.; Jang, S.; Chung, S.U.; Choi, Y.-J.; Kim, E.-K. Changes in the amino acid profiles and free radical scavenging activities of Tenebrio molitor larvae following enzymatic hydrolysis. PLoS ONE 2018, 13, e0196218.

Caligiani, A.; Marseglia, A.; Leni, G.; Baldassarre, S.; Maistrello, L.; Dossena, A.; Sforza, S. Composition of black soldier fly prepupae and systematic approaches for extraction and fractionation of proteins, lipids and chitin. Food Res. Int. 2018, 105, 812–820.

Firmansyah, M.; Abduh, M.Y. Production of protein hydrolysate containing antioxidant activity from Hermetia illucens. Heliyon 2019, 5, e02005.

Mintah, B.K.; He, R.; Dabbour, M.; Xiang, J.; Hui, J.; Agyekum, A.A.; Ma, H. Characterization of edible soldier fly protein and hydrolysate altered by multiple-frequency ultrasound: Structural, physical, and functional attributes. Process Biochem. 2020, 95, 157–165.

Zhu, D.; Huang, X.; Tu, F.; Wang, C.; Yang, F. Preparation, antioxidant activity evaluation, and identification of antioxidant peptide from black soldier fly (Hermetia illucens L.) larvae. J. Food Biochem. 2020, 44, e13186.

Vitthalrao B. Khyade (2021). Rearing the Black Soldier Fly, Hermetia illucens (Linnaeus) (Diptera: Stratiomyidae) in local environmental conditions of Baramati (India). Uttar Pradesh Journal of Zoology 42 (5): 64-72, 2021 ISSN: 0256-971X (P). 262.KHYADE4252021UPJOZ718.pdf

Vitthalrao B. Khyade (2021). Larval Instars of Black Soldier Fly for Converting Food Waste into Livestock Feed. EC Veterinary Science 6.6 (2021): 50-53 https://www.ecronicon.com/ecve/pdf/ECVE-06-00401.pdf

Vitthalrao B. Khyade (2021). Utilization of the methanol maceratives of prepupal stages of black soldier fly, Hermetia illucens L. for inhibition of bacterial growth. Uttar Pradesh Journal of Zoology 42(14): 109-118, 2021 ISSN: 0256-971X (P).

V. B. Khyade and A. B. Tamhane (2021). Utilization of the methanol maceratives of prepupal stages of black soldier fly, Hermetia illucens L. for inhibition of bacterial growth. International Journal of Researches in Agriculture and Technology. IJRBAT, Issue (Special-17), June 2021: 485-499 e-ISSN 2347 – 517X.

Siegel R, DeSantis C, Jemal A. Colorectal cancer statistics, 2014. CA: Cancer J Clin 2014; 64:104-17.

Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017; 66:683-91.

Guinney J, Dienstmann R, Wang X et al. The consensus molecular subtypes of colorectal cancer. Nat Μed 2015; 21:1350.

Van Cutsem E, Cervantes A, Adam R et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol 2016; 27: 1386- 422.

Morgensztern D, McLeod HL. PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer Drugs 2005; 16: 797-803.

Paraskeva C, Buckle BG, Sheer D, Wigley CB (1984). The isolation and characterization of colorectal epithelial cell lines at different stages in malignant transformation from familial polyposis coli patients. Int J Cancer 34:49–56.

Bruce WR, Meeker BE, Valeriote FA. Comparison of the sensitivity of normal hematopoietic and transplanted lymphoma colony-forming cells to chemotherapeutic agents administered in vivo. J Natl Cancer Inst 1966; 37: 233-45.

Hai Chen, Xiaocheng Tang, Ting Liu, Liang Jing, Junhui Wu (2019). Zingiberene inhibits in vitro and in vivo human colon cancer cell growth via autophagy induction, suppression of PI3K/ AKT/mTOR Pathway and caspase 2 deactivation. JBUON 2019; 24(4): 1470-1475 ISSN: 1107-0625, online ISSN: 2241-6293 www.jbuon.com

Xue Han, Chung Fan Liu, Na Gao, Jing Zhao and Jian Xu (2018). Kaempferol suppresses proliferation but increases apoptosis and autophagy by up-regulating microRNA-340 in human lung cancer cells. Biomed Pharmacother. 2018 Dec; 108:809-816. doi: 10.1016/j.biopha.2018.09.087. https://pubmed.ncbi.nlm.nih.gov/30253373/

Hejase, A.J., & Hejase, H.J. (2013). Research Methods, A Practical Approach for Business Students (2nd edn.). Philadelphia, PA, USA: Masadir Inc., p. 58

Neve R.M., Chin K., Fridlyand J., Yeh J., Baehner F.L., Fevr T., Clark L., Bayani N., Coppe J.P., Tong F., et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006;10: 515–527. doi: 10.1016/j.ccr.2006.10.008.

Sos M.L., Michel K., Zander T., Weiss J., Frommolt P., Peifer M., Li D., Ullrich R., Koker M., Fischer F., et al. Predicting drug susceptibility of non-small cell lung cancers based on genetic lesions. J. Clin. Invest. 2009;119: 1727–1740. doi: 10.1172/JCI37127.

McDermott U., Sharma S.V., Dowell L., Greninger P., Montagut C., Lamb J., Archibald H., Raudales R., Tam A., Lee D., et al. Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumor cell line profiling. Proc. Natl. Acad. Sci. USA. 2007; 104:19936–19941. doi: 10.1073/pnas.0707498104.

Klionsky DJ (November 2007). "Autophagy: from phenomenology to molecular understanding in less than a decade". Nature Reviews Molecular Cell Biology. 8 (11): 931–7. doi:10.1038/NRM2245. ISSN 14710072. PMID 17712358. S2CID 7376303. Wikidata Q29614174.

O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007; 445:106.

Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. J Nat Prod 2007;70:461-77. 17.

Ramakrishnan RA. Anticancer properties of Zingiber officinale–Ginger: A review. Int J Med Pharm Sci 2013;3:11-20.

Cudjoe EK, Kyte SL, Saleh T, Landry JW, Gewirtz DA (Eds). Autophagy Inhibition and Chemosensitization in Cancer Therapy. In: Targeting Cell Survival Pathways to Enhance Response to Chemotherapy, 2019, pp 259-73.

Chan ML, Liang JW, Hsu LC, Chang WL, Lee SS, Guh JH. Zerumbone, a ginger sesquiterpene, induces apoptosis and autophagy in human hormone-refractory prostate cancers through tubulin binding and crosstalk between endoplasmic reticulum stress and mitochondrial insult. Naunyn-Schmiedeberg’s Arch Pharmacol 2015; 388:1223-36.

Wang B, Zhou TY, Nie CH, Wan DL, Zheng SS. Bigelovin, a sesquiterpene lactone, suppresses tumor growth through inducing apoptosis and autophagy via the inhibition of mTOR pathway regulated by ROS generation in liver cancer. Biochem Biophys Res Commun 2018; 499:156-63.

Chen M, Yin X, Lu C et al. Mahanine induces apoptosis, cell cycle arrest, inhibition of cell migration, invasion and PI3K/AKT/mTOR signalling pathway in glioma cells and inhibits tumor growth in vivo. Chemicobiol Interactions 2019; 299:1-7.




DOI: https://doi.org/10.37628/ijger.v8i2.832

Refbacks

  • There are currently no refbacks.