Open Access Open Access  Restricted Access Subscription or Fee Access

Immunotherapy- A Life Saving Treatment

Moumita Ghosh, Chandan Sarkar

Abstract


ABSTRACT

Immunotherapy is a type of cancer treatment that induces the body’s immune system to eliminate the tumor. They generally enhance antitumor immune response or neutralize inhibitory pathways to eliminate the tumor. Immunotherapy is different from chemotherapy. In the case of chemotherapy, one or more drugs are used to destroy the cancer cell by inhibiting the growth of the cell. The drugs used in chemotherapy cannot differentiate between the body’s normal cell and the cancer cell, the cell which grows rapidly these drugs inhibit their growth, sometimes they inhibit the growth of muscle cells which grow rapidly. But in immunotherapy we used the immune checkpoints to destroy cancer cells, these checkpoints are the body’s natural defense system.

 

Keywords: Immunotherapy, cancer, tumor, nanomaterial

Cite this Article: Moumita Ghosh, Chandan Sarkar. Immunotherapy: A Life Saving Treatment. International Journal of Cell Biology and Cellular Processes. 2020; 6(2): 1–9p.


Full Text:

PDF

References


Decker WK, Da Silva RF, Sanabria MH, et al. Cancer immunotherapy: historical perspective of a clinical revolution and emerging preclinical animal models. Front Immunol. 2017;8:829. https//:. doi: 10.3389/fimmu.2017.00829, PMID 28824608.

Dong H, Markovic SN. The basics of cancer immunotherapy. New York: Springer; 2018.

Oiseth SJ, Aziz MS. Cancer immunotherapy: a brief review of the history, possibilities, and challenges ahead. J Cancer Metastasis Treat. 2017;3(10):250. doi: 10.20517/2394–4722.2017.41.

Institute Pasteur France. Viruses and human cancers. Online Course; 2019.

Targeted oncology. A brief history of immunotherapy; 2014 [cited Feb 8, 2019]. Available from: https://www.targetedonc.com/publications/special-reports/2014/immunotherapy-issue3/a-brief-history-of-immunotherapy.

McCarthy EF. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J. 2006;26:154–8. PMID 16789469.

Isaacs A, Lindenmann J. Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci. 1957;147(927):258–67. doi: 10.1098/rspb.1957.0048, PMID 13465720.

Miller JF, Mitchell GF, Weiss NS. Cellular basis of the immunological defects in thymectomized mice. Nature. 1967;214(5092):992–7. doi: 10.1038/214992a0, PMID 6055415.

Pavletic ZS, Armitage JO. Bone marrow transplantation for cancer: an overview. Oncologist. 1996;1(3):159–68. doi: 10.1634/theoncologist.1–3–159, PMID 10387982.

Tan S, Li D, Zhu X. Cancer immunotherapy: pros, cons and beyond. Biomed Pharmacother. 2020;124:Article 109821. doi: 10.1016/j.biopha.2020.109821, PMID 31962285.

Me IJ, Sanz R, Hermitte F, et al. Colorectal cancer: a paradigmatic model for cancer immunology and immunotherapy. Mol Asp Med. 2019;69:123–9.

Lu G, Luo H, Zhu X. Targeting the GRP78 pathway for cancer therapy. Front Med (Lausanne). 2020;7:351. doi: 10.3389/fmed.2020.00351, PMID 32850882.

Zhang Y, Chen L. Classification of Advanced Human cancers Based on Tumor Immunity in the MicroEnvironment (TIME) for Cancer Immunotherapy. JAMA Oncol. 2016;2(11):1403–4. doi: 10.1001/jamaoncol.2016.2450, PMID 27490017.

Sanmamed MF, Chen LA. A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell. 2019;176(3):677p. doi: 10.1016/j.cell.2019.01.008.

Zou S, Tong Q, Liu B, Huang W, Tian Y, Fu X. Targeting STAT3 in Cancer Immunotherapy. Mol Cancer. 2020;19(1):145. doi: 10.1186/s12943–020–01258–7, PMID 32972405.

Théon AP. Intralesional and topical chemotherapy and immunotherapy. Vet Clin North Am Equine Pract. 1998;14(3):659–71, viii. doi: 10.1016/s0749–0739(17)30191–8, PMID 9891729.

Wallat JD, Harrison JK, Pokorski JK. pH responsive doxorubicin delivery by fluorous polymers for cancer treatment. Mol Pharm. 2018;15(8):2954–62. doi: 10.1021/acs.molpharmaceut.7b01046, PMID 29381366.

Boutros C, Tarhini A, Routier E, et al. Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and incombination. Nat Rev Clin Oncoll. 2016;13(8):473–486p.

Baxter D. Active and passive immunization for cancer. Hum Vaccin Immunother. 2014;10(7):2123–9. doi: 10.4161/hv.29604, PMCID 4370360, PMID 25424829.

Curry JL, Tetzlaff MT, Nagarajan P, Drucker C, Diab A, Hymes SR, Duvic M, Hwu WJ, Wargo JA, Torres-Cabala CA, Rapini RP, Prieto VG. Diverse types of dermatologic toxicities from immune checkpoint blockade therapy. J Cutan Pathol. 2017;44(2):158–76. doi: 10.1111/cup.12858, PMID 27859479.

Gupta A, De Felice KM, Loftus EV Jr, Khanna S. Systematic review: colitis associated with anti–CTLA-4 therapy. Aliment Pharmacol Ther. 2015;42(4):406–17. doi: 10.1111/apt.13281, PMID 26079306.

Suzman DL, Pelosof L, Rosenberg A, Avigan MI. Hepatotoxicity of immune check-point inhibitors: an evolving picture of risk associated with a vital class of immunotherapy agents. Liver Int. 2018;38(6):976–87. doi: 10.1111/liv.13746, PMID 29603856.

Naidoo J, Wang X, Woo KM, Iyriboz T, Halpenny D, Cunningham J, Chaft JE, Segal NH, Callahan MK, Lesokhin AM, Rosenberg J, Voss MH, Rudin CM, Rizvi H, Hou X, Rodriguez K, Albano M, Gordon RA, Leduc C, Rekhtman N, Harris B, Menzies AM, Guminski AD, Carlino MS, Kong BY, Wolchok JD, Postow MA, Long GV, Hellmann MD. Pneumonitis in patients treated with anti‐programmed death‐1/programmed death ligand 1 therapy. J Clin Oncol. 2017;35(7):709–17. doi: 10.1200/JCO.2016.68.2005, PMID 27646942.

Byun DJ, Wolchok JD, Rosenberg LM, et al. Cancer immunotherapy—immune checkpoint blockade and associated endocrinopathies. Nat Rev Endo-crinol. 2017;13:195–207p.

Antoun J, Titah C, Cochereau I. Ocular and orbital side-effects of checkpoint inhibitors: a review article. Curr Opin Oncol. 2016;28(4):288–94. doi: 10.1097/CCO.0000000000000296, PMID 27136135.

Chakraborty P, Chatterjee S, Kesarwani P, Thyagarajan K, Iamsawat S, Dalheim A, Nguyen H, Selvam SP, Nasarre P, Scurti G, Hardiman G, Maulik N, Ball L, Gangaraju V, Rubinstein MP, Klauber-DeMore N, Hill EG, Ogretmen B, Yu XZ, Nishimura MI, Mehrotra S. Thioredoxin-1 improves the immunometabolic phenotype of antitumor T cells. J Biol Chem. 2019;294(23):9198–212. doi: 10.1074/jbc.RA118.006753, PMID 30971427.

Wang W, Green M, Choi JE, Gijón M, Kennedy PD, Johnson JK, Liao P, Lang X, Kryczek I, Sell A, Xia H, Zhou J, Li G, Li J, Li W, Wei S, Vatan L, Zhang H, Szeliga W, Gu W, Liu R, Lawrence TS, Lamb C, Tanno Y, Cieslik M, Stone E, Georgiou G, Chan TA, Chinnaiyan A, Zou W. CD8 (+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 2019;569(7755):270–4. doi: 10.1038/s41586–019–1170-y, PMID 31043744.

Nirmala JG, Lopus M. Cell death mechanisms in eukaryotes. Cell Biol Toxicol. 2020;36(2):145–64, doi: 10.1007/s10565–019–09496–2, PMID 31820165.

Vanden BT, Linkermann A, Jouan-Lanhouet S, et al. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol. 2014;15(2):135–47. doi: 10.1038/nrm3737, PMID 24452471. S2CID 13919892.

Rothschilds A, Tzeng A, Mehta NK, Moynihan KD, Irvine DJ, Wittrup KD. Order of administration of combination cytokine therapies can decouple toxicity from efficacy in syngeneic mouse tumor models. Oncoimmunology. 2019;8(5):e1558678. doi: 10.1080/2162402X.2018.1558678, PMID 31069130.

Schmittnaegel M, Rigamonti N, Kadioglu E, Cassará A, Wyser Rmili C, Kiialainen A, Kienast Y, Mueller HJ, Ooi CH, Laoui D, De Palma M. Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. Sci Transl Med. 2017;9(385). doi: 10.1126/scitranslmed.aak9670, PMID 28404865.

Ramjiawan RR, Griffioen AW, Duda DG. Anti-angiogenesis for cancer revisited: is there a role for combinations with immunotherapy? Angiogenesis. 2017;20(2):185–204. doi: 10.1007/s10456–017–9552-y, PMID 28361267.

Khan KA, Kerbel RS. Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa. Nat Rev Clin Oncol. 2018;15(5):310–24. doi: 10.1038/nrclinonc.2018.9, PMID 29434333.

Waeckerle-Men Y, Groettrup M. PLGA microspheres for improved antigen delivery to dendritic cells as cellular vaccines. Adv Drug Deliv Rev. 2005;57(3):475–82. doi: 10.1016/j.addr.2004.09.007, PMID 15560953.

Almeida JPM, Figueroa ER, Drezek RA. Gold nanoparticle mediated cancer immunotherapy. Nanomedicine. 2014;10(3):503–14. doi: 10.1016/j.nano.2013.09.011, PMID 24103304.

Sugiyama I, Sadzuka Y. Enhanced antitumor activity of different double arms polyethyleneglycol-modified liposomal doxorubicin. Int J Pharm. 2013;441(1–2):279–84. doi: 10.1016/j.ijpharm.2012.11.032, PMID 23194885.

Slowing II, Vivero-Escoto JL, Wu CW, Lin VS. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev. 2008;60(11):1278–88. doi: 10.1016/j.addr.2008.03.012, PMID 18514969.

Smith DM, Simon JK, Baker JR. Applications of nanotechnology for immunology. Nat Rev Immunol. 2013;13(8):592–605. doi: 10.1038/nri3488, PMID 23883969.

Gatti-Mays ME, Redman JM, Collins JM, Bilusic M. Cancer vaccines: enhanced immunogenic modulation through therapeutic combinations. Hum Vaccin Immunother. 2017;13(11):2561–74. doi: 10.1080/21645515.2017.1364322, PMID 28857666.

Tran TH, Tran TTP, Nguyen HT, Phung CD, Jeong JH, Stenzel MH, Jin SG, Yong CS, Truong DH, Kim JO. Nanoparticles for dendritic cell-based immunotherapy. Int J Pharm. 2018;542(1–2):253–65. doi: 10.1016/j.ijpharm.2018.03.029, PMID 29555438.

Reddy ST, Rehor A, Schmoekel HG, Hubbell JA, Swartz MA. In vivo targeting of dendritic cells in lymph nodes with poly (propylene sulfide) nanoparticles. J Control Release. 2006;112(1):26–34. doi: 10.1016/j.jconrel.2006.01.006, PMID 16529839.

Carboni E, Tschudi K, Nam J, Lu X, Ma AW. Particle margination and its implications on intravenous anticancer drug delivery. AAPS PharmSciTech. 2014;15(3):762–71. doi: 10.1208/s12249–014–0099–6, PMID 24687242.

Audran R, Peter K, Dannull J, Men Y, Scandella E, Groettrup M, Gander B, Corradin G. Encapsulation of peptides in biodegradable microspheres prolongs their MHC class-I presentation by dendritic cells and macrophages in vitro. Vaccine. 2003;21(11–12):1250–5. doi: 10.1016/s0264–410x(02)00521–2, PMID 12559806


Refbacks

  • There are currently no refbacks.