Open Access Open Access  Restricted Access Subscription or Fee Access

Screening And Docking Studies Of Phytocompounds For Targeting Breast Cancer Receptors And Proteins

Anushka Jain

Abstract


Phytocompounds, historically endorsed by Ayurveda, have long been recognized for their therapeutic potential in addressing various ailments, including complex diseases. Investigating their efficacy in breast cancer treatment has become a focus of research, employing molecular docking and ADME (Absorption, Distribution, Metabolism, and Excretion) analyses.A study was conducted utilizing 40 selected phytocompounds to assess their impact on various breast cancer receptors and proteins. Molecular docking simulations were performed using iGEMDock and Biovia Discovery Studio to determine binding affinities. Additionally, pharmacological properties were analyzed via SwissADME, ChemAgg, and ProTox II, aiding in substantiating the research hypothesis.Among the tested phytocompounds, licoagrochalcone, betulinic acid, thymoquinone, and astragaloside IV demonstrated the most promising outcomes in terms of docking and analysis conducted through iGEMDock. Furthermore, these compounds exhibited favorable safety profiles, belonging to non-toxicity classes and adhering to Lipinski’s rule of five, with no more than three violations during ADME assessment. Notably, they did not display aggregative tendencies The findings underscore the potential of licoagrochalcone, betulinic acid, thymoquinone, and astragaloside IV as robust therapeutic candidates for breast cancer treatment. Their favorable molecular interactions, coupled with desirable pharmacological properties and safety profiles, suggest a promising avenue for further exploration and development in combating breast cancer.


Full Text:

PDF

References


Sung, H., et al. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209-249.

American Cancer Society. (n.d.). Breast Cancer Types. Retrieved from https://www.cancer.org/cancer/breast-cancer/about/breast-cancer-types.html

Miki, Y., et al. (1994). A Strong Candidate for the Breast and Ovarian Cancer Susceptibility Gene BRCA1. Science, 266(5182), 66-71.

Colditz, G. A., et al. (1998). The Influence of Environment and Lifestyle on Breast Cancer Risk. Breast Cancer Research and Treatment, 52(1-3), 145-164.

Kamble, S. S., Gacche, R. N. (2018) Evaluation of Anti-Breast Cancer, Anti-Angiogenic and Antioxidant Properties of Selected Medicinal Plants. European Journal of Integrative Medicine 25. 13-19. https://doi.org/10.1016/j.eujim.2018.11.006

National Cancer Institute. (n.d.). Cancer Staging. Retrieved from https://www.cancer.gov/about-cancer/diagnosis-staging/staging

Emens, L. A. (2018). Breast Cancer Immunotherapy: Facts and Hopes. Clinical Cancer Research, 24(3), 511-520.

Chanda, S., Nagani, K. (2018) In vitro and in vivo Methods for Anticancer Activity Evaluation and Some Indian Medicinal Plants Possessing Anticancer Properties: An Overview. Journal of Pharmacognosy and Phytochemistry. 2(2). 140-152.

Mohanraj, K., Karthikeyan, B.S., Vivek-Ananth, R.P. et al. IMPPAT: A curated database of Indian Medicinal Plants, Phytochemistry And Therapeutics. Sci Rep 8, 4329 (2018). https://doi.org/10.1038/s41598-018-22631-z

Sarkar, D., Maiti, A. K. (2023) Virtual Screening and Molecular Docking Studies with Organosulfur and Flavonoid Compounds of Garlic Targeting the Estrogen Receptor Protein for the Therapy of Breast Cancer. Biointerface Research in Applied Chemistry, 13(1), 49-70. https://doi.org/10.33263/BRIAC131.049

Ismail, S., Uzairu, A., Sagagi, B., Suleiman, M. S. (2018) Insilico Molecular Docking and Pharmacokinetic Studies of Selected Phytochemicals With Estrogen and Progesterone Receptors as Anticancer Agent for Breast Cancer. Journal of the Turkish Chemical Society Section A: Chemistry, 5(3). 1337-1350. https://dx.doi.org/10.18596/jotcsa.449778

Arora, S., Singh, S., Piazza, G. A., Contreras, C. M., Panyam, J., Singh, A. P. (2013) Honokiol: a novel natural agent for cancer prevention and therapy. Curr Mol Med. 12(10). 1244-1252. http://doi.org/10.2174/156652412803833508

Baliga, M. S., Shivashankara, A. R., Venkatesh, S., Bhat, H. P., Palatty, P. L., Bhandari, G., Rao, S. (2019) Chapter 7 - Phytochemicals in the Prevention of Ethanol-Induced Hepatotoxicity: A Revisit. Dietary Interventions in Liver Disease. 79-89. https://doi.org/10.1016/B978-0-12-814466-4.00007-0

Roy, N. K., Parama, D., Banik, K., Bordoloi, D., et al. (2019) An Update on Pharmacological Potential of Boswellic Acids against Chronic Diseases. Int J Mol Sci. 20(17). 4101. http://doi.org/10.3390/ijms20174101

Alghasham, A. A. (2013) Cucurbitacins – A Promising Target for Cancer Therapy. Int J Health Sci. 7(1). 77-89. http://doi.org/10.12816/0006025

Wang, Y., Ma, W., Zheng, W. (2013) Deguelin, a novel anti-tumorigenic agent targeting apoptosis, cell cycle arrest and anti-angiogenesis for cancer chemoprevention. Mol Clin Oncol. 1(2). 215-219. http://doi.org/10.3892/mco.2012.36

Li, H., Chen, F. (2005) Isolation and purification of baicalein, wogonin and oroxylin A from the medicinal plant Scutellaria baicalensis by high-speed counter-current chromatography. Journal of Chromatography A. 1074(1-2). 107-110. http://doi.org/10.1016/j.chroma.2005.03.088

Li, J., Ding, Y., Li, X. C., Ferreira, D., Khan, S., et al. (2009) Scuteflorins A and B, dihydropyranocoumarins from Scutellaria lateriflora. J Nat Prod. 72(6). 983-987. http://doi.org/10.1021/np900068t

Nishikawa, K., Furukawa, H., Fujioka, T., Fujii, H., Mihashi, K., et al. (2000) Phenolics in tissue cultures of Scutellaria. Recent Research Developments in Phytochemistry. 4(16). 55-60

Calvani, R., Landi, F., Collamati, A., Serafini, E., Bernabei, R., Marzetti, E. (2015) Chapter 22 - Nutritional Strategies Against Sarcopenia of Aging: Current Evidence and Future Directions. Foods and Dietary Supplements in the Prevention and Treatment of Disease in Older Adults. 231-238. https://doi.org/10.1016/B978-0-12-418680-4.00022-1

Costa, I. M., Lima, F. O. V., Fernandes, L. C. B., Norrara, B., Neta, F. I., et al. (2019) Astragaloside IV Supplementation Promotes A Neuroprotective Effect in Experimental Models of Neurological Disorders: A Systematic Review. Curr Neuropharmacol. 17(7). 648-665. http://doi.org/10.2174/1570159X16666180911123341

Khan, M. I., Bouyahya, A., Hachlafi, N. E. L., Menyiy, N. E., Akram, M., et al. (2022) Anticancer properties of medicinal plants and their bioactive compounds against breast cancer: a review on recent investigations. Environmental Science and Pollution Research. 29. 24411-24444. https://doi.org/10.1007/s11356-021-17795-7

Roy, A., Anand, A., Garg, S., Khan, M. S., Bhasin, S., et al. (2022) Structure-Based In Silico Investigation of Agonists for Proteins Involved in Breast Cancer. Evidence-Based Complementary and Alternative Medicine. https://doi.org/10.1155/2022/7278731

Greenwell, M., Rahman, P. K. S. M. (2015) Medicinal Plants: Their Use in Anticancer Treatment. Int J Pharm Sci Res. 4103-12 http://doi.org/10.13040/IJPSR.0975-8232.6(10).4103-12

Haque, A., Brazeau, D., Amin, A. R. (2021) Perspectives on natural compounds in chemoprevention and treatments of cancer: an update with new promising compounds. European Journal of Cancer. 49. 165-183 https://doi.org/10.1016/j.ejca.2021.03.009

Zakaria, Z., gan, S. H., Mohamed, M. (2018) In vitro studies of Asian medicinal plants with potential activity against breast cancer. J Appl Bio Biotech. 6(4). 49-55. https://doi.org/10.7324/JABB.2018.60410

Majolo, F., Delwing, L. K. O. B., Marmitt, D. J., Bustamante-Filho, I. C., Goettert, M. I. (2019) Medicinal plants and bioactive natural compounds for cancer treatment: Important advances for drug discovery. Phytochemistry Letters. 31(2019). 196-207. https://doi.org/10.1016/j.phytol.2019.04.003

Richard, T. S., Kamdje, A. H. N., Mukhtar, F. (2015) Medicinal plants in Breast Cancer Therapy. J Dis Med Plants. 1(1). 19-23. https://doi.org/10.11648/j.jdmp.20150101.13

Sharma, H., Parihar, L., Parihar, P. (2011) Review on cancer and anticancerous properties of some medicinal plants. J. Med. Plants Res. 5(10). 1818-1835. https://doi.org/10.5897/JMPR.9001089

Madhuri, S., Pandey, G. (2009) Some anticancer medicinal plants of foreign origin. Current Science. 96(6). 779-783. http://www.jstor.org/stable/24104514

Gokalp, F. (2022) Therapeutic effect of some natural active compounds for breast cancer. Medical Oncology. 39(115). https://doi.org/10.1007/s12032-022-01704-0

Rezadoost, M. H., Kumleh, H. H., Ghasempour, A. (2019) Cytotoxicity and apoptosis induction in breast cancer, skin cancer and glioblastoma cells by plant extracts. Mol Bio Rep. 46. 5131-5142. https://doi.org/10.1007/s110033-019-04970-w

Saravanan, R., Raja, K. & Shanthi, D. (2022) GC–MS Analysis, Molecular Docking and Pharmacokinetic Properties of Phytocompounds from Solanum torvum Unripe Fruits and Its Effect on Breast Cancer Target Protein. Appl Biochem Biotechnol. 194. 529–555. https://doi.org/10.1007/s12010-021-03698-3

Sultana, S., Asif, H. M., Nazar, H. M. I., Akhtar, N., Rehman, J. Ur., & Rehman, R. Ur. (2014). Medicinal Plants Combating Against Cancer - a Green Anticancer Approach. Asian Pacific Journal of Cancer Prevention. Asian Pacific Organization for Cancer Prevention. https://doi.org/10.7314/apjcp.2014.15.11.4385

Guetchueng, S. T., Nahar, L., Ritchie, K. J., Sarker, S. D. (2022) Evaluation of the chemopreventive effect of selected medicinal plants extracts via induction of the Nrf2 in a modified model of breast cancer cells: identification of bioactive lead compounds. European Journal of Cancer Prevention. 31(1). 50-53. https://doi.org/10.1097/CEJ.0000000000000668

Levitsky, D. O., Dembitsky, V. M. (2015) Anti-breast cancer agents derived from plants. Nat Prod Bioprospect. 5. 1-16. doi: 10.1007/s13659-014-0048-9

Nawab, A., Yunus, M., Mahdi, A. A., Gupta, S. (2011) Evaluation of Anticancer Properties of Medicinal Plants from the Indian Sub-Continent. Mol Cell Pharmacol. 3(1). 21-29. doi: 10.4255/mcpharmacol.11.04

Slambrouck, S. V., Daniels, A. L., Hooten, C. J., Brock, S. L., et al. (2007) Effects of crude aqueous medicinal plant extracts on growth and invasion of breast cancer cells. Oncol Rep. 17(6). 1487-1492. https://doi.org/10.3892/or.17.6.1487

Asadi-Samani, M., Rafieian-Kopaei, M., Lorigooini, Z., Shirzad, H. (2019) A screening of anti-breast cancer effects and antioxidant activity of twenty medicinal plants gathered from Chaharmahal va Bakhtyari province, Iran. Journal of Pharmacy & Pharmacognosy Research. 7(3). 213-222. https://doaj.org/article/d150375af86146f1951f604b10dc07f5

Solowey, E., Lichtenstein, M., Sallon, S., Paavilainen, H., et al. (2014) Evaluating Medicinal Plants for Anticancer Activity. The Scientific World Journal. 2014(721402). https://dx.doi.org/10.1155/2014/721402

Bakchi, B., Krishna, A. D., Sreecharan, E., Ganesh, V. B. J. (2022) An overview on applications of SwissADME web tool in the design and development of anticancer, antitubercular and antimicrobial agents: A medicinal chemist's perspective. J Mol Str. 1259. 132712. https://doi.org/10.1016/j.molstruc.2022.132712

Nickel, A., Stadler, S. C. (2015) Role of epigenetic mechanisms in epithelial-to-mesenchymal transition of breast cancer cells. Translational Research. 165(1). 126-142. http://dx.doi.org/10.1016/j.trsl.2014.04.001

Bode, A. M., & Dong, Z. (2015). Toxic phytochemicals and their potential risks for human cancer. Cancer prevention research (Philadelphia, Pa.), 8(1), 1–8. https://doi.org/10.1158/1940-6207.CAPR-14-0160

Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E. The Protein Data Bank (2000) Nucleic Acids Research 28: 235-242 https://doi.org/10.1093/nar/28.1.235

BIOVIA, Dassault Systèmes, BIOVIA Discovery Studios, San Diego: Dassault Systèmes, 2021.

Hsu, K.C., Chen, Y.F., Lin, S.R. et al. (2011) iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics 12 (Suppl 1), S33 (2011). https://doi.org/10.1186/1471-2105-12-S1-S33

Daina, A., Michielin, O. & Zoete, V. (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7, 42717. https://doi.org/10.1038/srep42717

Daina, A., Michielin, O. & Zoete, V. (2014). iLOGP: A Simple, Robust, and Efficient Description of n-Octanol/Water Partition Coefficient for Drug Design Using the GB/SA Approach. J. Chem. Inf. Model. 54, 12, 3284–3301. https://doi.org/10.1021/ci500467k

Mohan, V., Gibbs, A. C., Cummings, M. D., Jaeger, E. P., & DesJarlais, R. L. (2005). Docking: successes and challenges. Current pharmaceutical design, 11(3), 323–333. https://doi.org/10.2174/1381612053382106

Banerjee, P., Eckert, A.O., Schrey, A.K., Preissner, R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018 Jul 2;46(W1):W257-W263. doi: 10.1093/nar/gky318

Yang, Z., Yang, Z., Dong, J., Wang, L., Zhang, L., Ding, J., Ding, X., Lu, A., Hou, T., Cao, D. (2019) Structural Analysis and Identification of Colloidal Aggregators in Drug Discovery. Journal of Chemical Information and Modeling 2019 59 (9), 3714-3726 10.1021/acs.jcim.9b00541

Georgopoulos, P., Sasso, A., Isukapalli, S. et al. Reconstructing population exposures to environmental chemicals from biomarkers: Challenges and opportunities. J Expo Sci Environ Epidemiol 19, 149–171 (2009). https://doi.org/10.1038/jes.2008.9

Price, P., Chaisson, C. A conceptual framework for modeling aggregate and cumulative exposures to chemicals. J Expo Sci Environ Epidemiol 15, 473–481 (2005). https://doi.org/10.1038/sj.jea.7500425

Kesharwani, R.K., Vishwakarma, V.K., Keservani, R.K., Singh, P., Katiyar, N., Tripathi, S. (2020). Role of ADMET Tools in Current Scenario: Application and Limitations. In: Singh, D.B. (eds) Computer-Aided Drug Design. Springer, Singapore. https://doi.org/10.1007/978-981-15-6815-2_4




DOI: https://doi.org/10.37628/ijaba.v9i2.875

Refbacks

  • There are currently no refbacks.