Open Access Open Access  Restricted Access Subscription or Fee Access

THE REGULATORY ROLE OF SMALL RNAS IN PLANT DEVELOPMENT AND DEFENCE MECHANISM

Akshat Bhatt, Gurjeet Kaur, Manpreet Kaur

Abstract


Small RNAs (sRNAs) are 20 to 40 nucleotides in length and plants use these regulatory RNAs to direct gene expression. In eukaryotes they act as a sequence-specific guide in several processes like assembly of heterochromatin, DNA elimination, mRNA cleavage and translational repression. Classes of sRNAs are categorized based on their origin and biogenesis. Out of all these, miRNAs and ta-siRNAs, constitute two important classes of endogenous small RNAs, are the ones that mainly inhibit gene expression at post transcriptional levels & have developmental roles in plant which includes growth and development of roots, shoots, leaves, flowers and seeds. They both also have involvement in plant stress response which can be both biotic and abiotic. This review explores the regulatory roles of small RNAs in plant development and defense mechanisms.


Full Text:

PDF

References


Baulcombe D.: RNA silencing in plants. Nature 2004. 431:356–363. [PubMed: 15372043]

Chapman EJ, Carrington JC:. Specialisation and evolution of endogenous small RNA pathways. Nat. Rev. Genet. 2007, 8:884–896. . [PubMed: 17943195]

Vaucheret H.: Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev. 2006, 20:759–771. [PubMed: 16600909]

Vazquez F.: Arabidopsis endogenous small RNAs: highways and byways. Trends Plant Sci. 2006 11(9):460–468. [PubMed: 16893673]

Axtell MJ: Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 2013, 64:137–159.

Hutvagner G, Simard MJ. Argonaute proteins: key players in RNA silencing. Nat. Rev. Mol. Cell Biol. 2008, 9:22–32. [PubMed: 18073770]

Katiyar-Agarwal S, Gao S, Vivian-Smith A, Jin H.: A novel class of bacteria-induced small RNAs in Arabidopsis . Genes Dev. 2007, 21:3123–3134. [PubMed: 18003861]

Katiyar-Agarwal S, Morgan R, Dahlbeck D, Borsani O, Villegas A Jr, et al.: A pathogen-inducible endogenous siRNA in plant immunity. Proc. Natl. Acad. Sci. USA. 2006; 103:18002–18007. [PubMed: 17071740]

Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, Burge CB, Bartel DP: The microRNAs of Caenorhabditis elegans. Genes Dev 2003, 17(8):991–1008.

Molnar A, Schwach F, Studholme DJ, Thuenemann EC, Baulcombe DC: miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 2007, 447(7148):1126–1129.

Zhao X, Zhang H, Li L: Identification and analysis of the proximal promoters of microRNA genes in Arabidopsis. Genomics 2013, 101(3):187–194.

Barik S, SarkarDas S, Singh A, Gautam V, Kumar P, Majee M, Sarkar AK: Phylogenetic analysis reveals conservation and diversification of microRNA166 genes among diverse plant species. Genomics 2014, 103(1):114–121.

Vazquez F, Gasciolli V, Crete P, Vaucheret H: The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr Biol 2004, 14(4):346–351.

Yu B, Yang Z, Li J, Minakhina S, Yang M, Padgett RW, Steward R, Chen X: Methylation as a crucial step in plant microRNA biogenesis. Science 2005, 307(5711):932–935.

Chen X: Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25:21–44.

Huang, J.; Yang, M.; Zhang, X. The function of small RNAs in plant biotic stress response. J. Integr. Plant Biol. 2016, 58, 312–327. [CrossRef]

Huang, J.; Yang, M.; Lu, L.; Zhang, X.: Diverse functions of small RNAs in different plant–pathogen communications. Front. Microbiol. 2016, 7, 1552.

Petricka, J.J., Winter, C.M. and Benfey, P.N.: Control of Arabidopsis root development. Annu. Rev. Plant Biol.2012, 63, 563–590.

Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY: Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis. Plant Cell 2005, 17(8):2204–2216.

Mallory AC, Bartel DP, Bartel B: MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 2005, 17(5):1360–1375.

Gutierrez, L., Bussell, J.D., Pacurar, D.I., Schwambach, J., Pacurar, M. and Bellini, C.: Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell,2009, 21, 3119–3132.

Sorin, C., Bussell, J.D., Camus, I. et al.: Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1. Plant Cell, 2005, 17, 1343–1359.

Guo HS, Xie Q, Fei JF, Chua NH: MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development. Plant Cell 2005, 17(5):1376–1386.

Carlsbecker A, Lee JY, Roberts CJ, Dettmer J, Lehesranta S, ZhouJ, Lindgren O, Moreno-Risueno MA, Vaten A, Thitamadee S, Campilho A, Sebastian J, Bowman JL, Helariutta Y, Benfey PN: Cell signalling by microRNA165/6 directs gene dosedependent root cell fate. Nature 2010, 465(7296):316–321.

Singh A, Roy S, Singh S, Das SS, Gautam V, Yadav S, Kumar A, Singh A, Samantha S, Sarkar AK: Phytohormonal crosstalk modulates the expression of miR166/165s, target Class III HD-ZIPs, and KANADI genes during root growth in Arabidopsis thaliana. Sci Rep 2017, 7(1):3408.

Bazin, J., Khan, G.A, Combier, J.P. et al.: miR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula. Plant J. 2013, 74, 920–934.

Rodriguez, R.E., Ercoli, M.F., Debernardi, J.M., Breakfield, N.W., Mecchia, M.A., Sabatini, M., Cools, T., De Veylder, L., Benfey, P.N. and Palatnik, J.F.: MicroRNA miR396 regulates the switch between stem cells and transit-amplifying cells in Arabidopsis roots. Plant Cell, 2015, 27, 3354–3366.

Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B.: Cellular organisation of the Arabidopsis thaliana root. Development 1993, 119, 71–84.

Wang, L., Mai, Y.X., Zhang, Y.C., Luo, Q. and Yang, H.Q.: Micro-RNA171c-targeted SCL6-II, SCL6-III, and SCL6-IV genes regulate shoot branching in Arabidopsis. Mol. Plant 2010, 3, 794–806.

Lauressergues, D., Delaux, P.M., Formey, D., Lelandais-Briere, C., Fort, S.,Cottaz, S., Becard, G., Niebel, A., Roux, C. and Combier, J.P.: The microRNA miR171h modulates arbuscular mycorrhizal colonisation of Medicago truncatula by targeting NSP2. Plant J. 2012, 72, 512–522.

Zhou, Y., Liu, X., Engstrom, E.M., Nimchuk, Z.L., Pruneda-Paz, J.L., Tarr, P.T., Yan, A., Kay, S.A. and Meyerowitz, E.M.: Control of plant stem cell function by conserved interacting transcriptional regulators. Nature, 2015, 517, 377–380,.

Wang, J.J. and Guo, H.S.: Cleavage of INDOLE-3-ACETIC ACID INDUCIBLE28 mRNA by microRNA847 upregulates auxin signalling to modulate cell proliferation and lateral organ growth in Arabidopsis. Plant Cell, 2015, 27, 574–590,.

Liu Z, Kumari S, Zhang L, Zheng Y, Ware D: Characterization of miRNAs in response to short-term waterlogging in three inbred lines of Zea mays. PLoS ONE 2012, 7(6).

Xie, Q., Frugis, G., Colgan, D. and Chua, N.H.: Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev. 2000, 14, 3024–3036.

Chen, Z.H., Bao, M.L., Sun, Y.Z., Yang, Y.J., Xu, X.H., Wang, J.H., Han, N., Bian, H.W. and Zhu, M.Y. Regulation of auxin response by miR393-targeted transport inhibitor response protein 1 is involved in normal development in Arabidopsis. Plant Mol. Biol. 2011, 77, 619–629.

Bian, H., Xie, Y., Guo, F., Han, N., Ma, S., Zeng, Z., Wang, J., Yang, Y. and Zhu, M.: Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa). New Phytol. 2012, 196, 149–161,.

Marin, E., Jouannet, V., Herz, A., Lokerse, A.S., Weijers, D., Vaucheret, H., Nussaume, L., Crespi, M.D. and Maizel, A.: miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell,2010, 22, 1104–1117.

Yoon, E.K., Yang, J.H., Lim, J., Kim, S.H., Kim, S.K. and Lee, W.S.: Auxin regulation of the microRNA390-dependent transacting small interfering RNA pathway in Arabidopsis lateral root development. Nucleic Acids Res. 2010, 38, 1382–1391.

Barton MK: Twenty years on: the inner workings of the shoot apical meristem, a developmental dynamo. Dev Biol, 2010, 341:95-113.

McConnell JR, Barton MK: Leaf polarity and meristem formation in Arabidopsis. Development,1998, 125:2935-2942.

McConnell JR, Barton MK: Effect of mutations in the PINHEAD gene of Arabidopsis on the formation of shoot apical meristems. Dev Genet,1995, 16:358-366 .

Ji L, Liu X, Yan J, Wang W, Yumul RE, Kim YJ, Dinh TT, Liu J, Cui X, Zheng B et al.: ARGONAUTE10 and ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs in Arabidopsis. PLoS Genet, 2011.

Liu Q, Yao X, Pi L, Wang H, Cui X, Huang H: The ARGONAUTE10 gene modulates shoot apical meristem maintenance and establishment of leaf polarity by repressing miR165/166 in Arabidopsis. Plant J, 2009, 58:27-40.

Zhu H, Hu F, Wang R, Zhou X, Sze SH, Liou LW, Barefoot A, Dickman M, Zhang X: Arabidopsis ARGONAUTE10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell, 2011, 145:242-256.

Zhou Y, Honda M, Zhu H, Zhang Z, Guo X, Li T, Li Z, Peng X, Nakajima K, Duan L et al.: Spatiotemporal sequestration of miR165/166 by Arabidopsis ARGONAUTE10 promotes shoot apical meristem maintenance. Cell Rep, 2015, 10:1819-1827.

Javelle M, Timmermans MC, Tucker MR, Laux T: A protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meristem. Dev Cell, 2013, 24:125-132.

Schoof H, Lenhard M, Haecker A, Mayer KFX, Jurgens G, Laux T: The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell, 2000, 100:635-644.

Rodriguez RE, Mecchia MA, Debernardi JM, Schommer C, Weigel D, Palatnik JF: Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development, 2010, 137:103-112.

Liu DM, Song Y, Chen ZX, Yu DQ: Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiol Plant,2009, 136:223-236.

Wang L, Gu XL, Xu DY, Wang W, Wang H, Zeng MH, Chang ZY, Huang H, Cui XF: miR396-targeted AtGRF transcription factors are required for coordination of cell division and differentiation during leaf development in Arabidopsis. J Exp Bot,2011, 62:761-773,.

Debernardi JM, Mecchia MA, Vercruyssen L, Smaczniak C, Kaufmann K, Inze D, Rodriguez RE, Palatnik JF: Posttranscriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity. Plant J, 2014, 79:413-426.

Aida M, Ishida T, Tasaka M: Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development, 1999, 126:1563-1570,.

Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M: Genes involved in organ separation in Arabidopsis: an analysis of the cup shaped cotyledon mutant. Plant Cell, 1997, 9:841-857.

Laufs P, Peaucelle A, Morin H, Traas J: MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development, 2004, 131:4311-4322,.

Mallory AC, Dugas DV, Bartel DP, Bartel B: MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol, 2004, 14:1035-1046.

Sieber P, Wellmer F, Ghyselinck J, Riechmann JL, Meyerowitz EM: Redundancy and specialisation among plant microRNAs: role of the MIR164 family in developmental robustness. Development,2007, 134:1051-1060.

Yu N, Cai WJ, Wang S, Shan CM, Wang LJ, Chen XY: Temporal control of trichome distribution by microRNA156-targeted SPL genes in Arabidopsis thaliana. Plant Cell,2010, 22:2322-2335.

Shikata M, Koyama T, Mitsuda N, Ohme-Takagi M: Arabidopsis SBP-box genes SPL10 SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase. Plant Cell Physiol, 2009, 50:2133-2145.

Yamaguchi A, Wu MF, Yang L, Wu G, Poethig RS, Wagner D: The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY FRUITFUL, and APETALA1. Dev Cell,2009, 17:268-278.

Wang JW, Czech B, Weigel D: miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell,2009, 138:738-749.

Yu ZX, Wang LJ, Zhao B, Shan CM, Zhang YH, Chen DF, Chen XY: Progressive regulation of sesquiterpene biosynthesis in Arabidopsis and Patchouli (Pogostemon cablin) by the miR156-targeted SPL transcription factors. Mol Plant, 2015, 8:98-110.

Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW: Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell, 2011, 23:1512-1522.

Stief A, Altmann S, Hoffmann K, Pant BD, Scheible WR, Baurle I: Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. Plant Cell, 2014, 26:1792-1807.

47. Cui LG, Shan JX, Shi M, Gao JP, Lin HX: The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant J, 2014, 80:1108-1117.

Bergonzi S, Albani MC, Ver Loren van Themaat E, Nordstrom KJ, Wang R, Schneeberger K, Moerland PD, Coupland G: Mechanisms of age-dependent response to winter temperature in perennial flowering of Arabis alpina. Science, 2013, 340:1094-1097.

Zhou CM, Zhang TQ, Wang X, Yu S, Lian H, Tang H, Feng ZY, Zozomova-Lihova J, Wang JW: Molecular basis of age dependent vernalization in Cardamine flexuosa. Science, 2013, 340:1097-1100.

Schwarz S, Grande AV, Bujdoso N, Saedler H, Huijser P: The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol Biol, 2008, 67:183-195.

Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS: The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 2009, 138:750-759.

Yant L, Mathieu J, Dinh TT, Ott F, Lanz C, Wollmann H, Chen XM, Schmid M: Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. Plant Cell, 2010, 22:2156-2170.

Efroni I, Blum E, Goldschmidt A, Eshed Y: A protracted and dynamic maturation schedule underlies Arabidopsis leaf development. Plant Cell 2008, 20: 2293-2306.

Palatnik JF, Allen E, Wu XL, Schommer C, Schwab R, Carrington JC, Weigel D: Control of leaf morphogenesis by microRNAs. Nature 2003, 425:257-263.

Shleizer-Burko S, Burko Y, Ben-Herzel O, Ori N: Dynamic growth program regulated by LANCEOLATE enables flexible leaf patterning. Development 2011, 138:695-704.

Zhou M, Li D, Li Z, Hu Q, Yang C, Zhu L, Luo H: Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol 2013, 161:1375-1380.

Mao Y, Wu F, Yu X, Bai J, Zhong W, He Y: MicroRNA319atargeted Brassica rapa ssp. pekinensis TCP genes modulate head shape in Chinese cabbage by differential cell division arrest in leaf regions. Plant Physiol 2014, 164:710-720.

Ori N, Cohen AR, Etzioni A, Brand A, Yanai O, Schleizer S, Menda N, Amsellem Z, Efroni I, Pekker I et al.: Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet 2007, 39:787-791.

Koyama T, Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M: TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. Plant Cell 2010, 22:3574-3588.

Schommer C, Debernardi JM, Bresso EG, Rodriguez RE, Palatnik JF: Repression of cell proliferation by miR319regulated TCP4. Mol Plant 2014, 7:1533-1544.

Efroni I, Han SK, Kim HJ, Wu MF, Steiner E, Birnbaum KD, Hong JC, Eshed Y, Wagner D: Regulation of leaf maturation by chromatin-mediated modulation of cytokinin responses. Dev Cell 2013, 24:438-445.

Yanai O, Shani E, Russ D, Ori N: Gibberellin partly mediates LANCEOLATE activity in tomatoes. Plant J 2011, 68:571-582.

Rodriguez RE, Mecchia MA, Debernardi JM, Schommer C, Weigel D, Palatnik JF: Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 2010, 137:103-112.

Koyama T, Furutani M, Tasaka M, Ohme-Takagi M: TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary specific genes in Arabidopsis. Plant Cell 2007, 19:473-484,.

Liu DM, Song Y, Chen ZX, Yu DQ: Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiol Plant 2009, 136:223-236.

Wang L, Gu XL, Xu DY, Wang W, Wang H, Zeng MH, Chang ZY, Huang H, Cui XF: miR396-targeted AtGRF transcription factors are required for coordination of cell division and differentiation during leaf development in Arabidopsis. J Exp Bot 2011, 62:761-773.

Si-Ammour A, Windels D, Arn-Bouldoires E, Kutter C, Ailhas J, Meins F Jr, Vazquez F: miR393 and secondary siRNAs regulate expression of the TIR1/AFB2 auxin receptor clade and auxin related development of Arabidopsis leaves. Plant Physiol 2011, 157:683-691.

Xia K, Wang R, Ou X, Fang Z, Tian C, Duan J, Wang Y, Zhang M: OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS One 2012, 7:e30039.

Bian H, Xie Y, Guo F, Han N, Ma S, Zeng Z, Wang J, Yang Y, Zhu M: Distinctive expression patterns and roles of the miRNA393/ TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa). New Phytol 2012, 196:149-161.

Alonso-Peral MM, Li J, Li Y, Allen RS, Schnippenkoetter W, Ohms S, White RG, Millar AA: The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis. Plant Physiol 2010, 154:757-771.

Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW: AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 2005, 132:4563-4574.

Lim PO, Lee IC, Kim J, Kim HJ, Ryu JS, Woo HR, Nam HG: AUXIN RESPONSE FACTOR2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity. J Exp Bot 2010, 61:1419-1430.

Willmann MR, Endres MW, Cook RT, Gregory BD: The functions of RNA-dependent RNA polymerases in Arabidopsis. Arabidopsis Book 2011, 9:e0146.

Das SS, Karmakar P, Nandi AK, Sanan-Mishra N: Small RNA mediated regulation of seed germination. Front Plant Sci 2015, 6:828.

Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC: Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J 2007, 52(1):133–146.

Kim JY, Kwak KJ, Jung HJ, Lee HJ, Kang H: MicroRNA402 affects seed germination of Arabidopsis thaliana under stress conditions via targeting DEMETER-LIKE Protein3 mRNA. Plant Cell Physiol 2010, 51(6):1079–1083.

Wang, S., Wu, K., Yuan, Q. et al: Control of grain size, shape and quality by OsSPL16 in rice. Nat. Genet. 2012, 44, 950–954.

Wang, S., Li, S., Liu, Q. et al: The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat. Genet 2015. 47, 949–954.

Duan, P., Ni, S., Wang, J., Zhang, B., Xu, R., Wang, Y., Chen, H., Zhu, X. and Li, Y: Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat. Plants 2015, 2, 15203.

Jung, H.J. and Kang, H: Expression and functional analyses of micro-RNA417 in Arabidopsis thaliana under stress conditions. Plant Physiol. Biochem 2007. 45, 805–811.

Kim JY, Lee HJ, Jung HJ, Maruyama K, Suzuki N, Kang H: Overexpression of microRNA395c or 395e affects the seed germination of Arabidopsis thaliana under stress conditions. Planta 2007, 232(6):1447–1454.

Yan J, Zhao C, Zhou J, Yang Y, Wang P, Zhu X, Tang G, Bressan RA,Zhu JK: The miR165/166 mediated regulatory module plays critical roles in ABA homeostasis and response in Arabidopsis thaliana. PLoS Genet 2016, 12(11).

Martin RC, Liu PP, Goloviznina NA, Nonogaki H: microRNA, seeds, and Darwin diverse function of miRNA in seed biology and plant responses to stress. J Exp Bot 2010, 61(9):2229–2234,.

Li C, Zhang B: MicroRNAs in control of plant development. J Cell Physiol, 2015.

Yu N, Cai WJ, Wang S, Shan CM, Wang LJ, Chen XY: Temporal control of trichome distribution by microRNA156-targeted SPL genes in Arabidopsis thaliana. Plant Cell 2010, 22(7):2322–2335.

Xing S, Salinas M, Garcia-Molina A, Hohmann S, Berntgen R, Huijser P: SPL8 and miR156-targeted SPL genes redundantly regulate Arabidopsis gynoecium differential patterning. Plant J 2013, 5(4):566–577.

Gandikota M, Birkenbihl RP, Hohmann S, Cardon GH, Saedler H, Huijser P: The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevent early flowering by translational inhibition in seedlings. Plant J49 2007,(4):683–693.

Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP: Prediction of plant microRNA targets. Cell 2002, 110(4):513–520.

Blazquez MA, Green R, Nilsson O, Sussman MR, Weigel D: Gibberellins promote flowering of arabidopsis by activating the LEAFY promoter. Plant Cell 1998, 10(5):791–800.

Achard P, Herr A, Baulcombe DC, Harberd NP: Modulation of floral development by a gibberellin-regulated microRNA. Development 2004, 131(14):3357–3365,.

Nikovics K, Blein T, Peaucelle A, Ishida T, Morin H, Aida M, Laufs P: The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell 2006, 18(11):2929–2945.

Chen X: A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 2004, 303(5666): 2022– 2025.

Aukerman MJ, Sakai H: Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 2003, 15(11): 2730–2741.

Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, Guilfoyle TJ, Hagen G, Alonso JM, Cohen JD, Farmer EE, Ecker JR, Reed JW: Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 2005, 132(18):4107–4118.

JW: Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 2005, 132(18): 4107–4118.

Wu MF, Tian Q, Reed JW: Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 2006, 133(21): 4211–4218.

Cartolano, M. et al: A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity. Nat. Genet. 2007, 39, 901–905.

Hong, R.L. et al: Regulatory elements of the floral home-otic gene AGAMOUS identified by phylogenetic footprinting and shadowing. Plant Cell 2003, 15, 1296–1309.

Wagner, G.J., Wang, E., Shepherd, R.W: New approaches for studying and exploiting an old protuberance, the plant trichome. Ann. Bot. 2004, 93, 3–11,.

Navarro, L.; Dunoyer, P.; Jay, F.; Arnold, B.; Dharmasiri, N.; Estelle, M.; Voinnet, O.; Jones, J.D.G. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling: Science 2006, 312, 436–439,.

Xia, K.; Wang, R.; Ou, X.; Fang, Z.; Tian, C.; Duan, J.; Wang, Y.; Zhang, M: OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS ONE, 7, e30039, 2006.

Pandey, P.; Srivastava, P.K.; Pandey, S.P. Prediction of plant miRNA targets. In Methods in Molecular Biology; Humana Press: New York, NY, USA; 2019, 99–107.

Li, Y.; Zhang, Q.; Zhang, J.; Wu, L.; Qi, Y.; Zhou, J.-M: Identification of MicroRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol 2010, 152, 2222–2231.

Li, Y.; Lu, Y.-G.; Shi, Y.; Wu, L.; Xu, Y.-J.; Huang, F.; Guo, X.-Y.; Zhang, Y.; Fan, J.; Zhao, J.-Q.; et al: Multiple rice MicroRNAs are involved in immunity against the blast fungus magnaporthe oryzae. Plant Physio 2014l, 164, 1077–1092,.

Dunoyer, P.; Himber, C.; Voinnet, O.: Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium tumefaciens infections. Nat. Genet 2006, 38, 258–263,.

Curaba, J.; Singh, M.B.; Bhalla, P.L: miRNAs in the crosstalk between phytohormone signalling pathways. J. Exp. Bot, 65, 1425–1438, 2014. Jagadeeswaran, G.; Saini, A.; Sunkar, R: Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta 2009, 229, 1009–1014.

Jagadeeswaran, G.; Saini, A.; Sunkar, R. Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta 2009, 229, 1009–1014.

Zhang, W.; Gao, S.; Zhou, X.; Chellappan, P.; Chen, Z.; Zhou, X.; Zhang, X.; Fromuth, N.; Coutino, G.; Coffey, M.; et al. Bacteria Responsive microRNAs regulate plant innate immunity by modulating plant hormone networks. Plant Mol. Biol 2010, 75, 93–105.

Lee, H.J.; Park, Y.J.; Kwak, K.J.; Kim, D.; Park, J.H.; Lim, J.Y.; Shin, C.; Yang, K.-Y.; Kang, H: MicroRNA844-guided downregulation of cytidine diphosphate diacylglycerol synthase3 (CDS3) mRNA Affects the response of arabidopsis thaliana to bacteria and fungi. Mol. Plant Microbe Interact 2015, 28, 892–900.

Gupta, O.P.; Permar, V.; Koundal, V.; Singh, U.D.; Praveen, S: MicroRNA regulated defence responses in Triticum aestivum L. during Puccinia graminis f.sp. tritici infection. Mol. Biol. Rep 2011, 39, 817–824.

Stergiopoulos, I.; Burg, H.A.V.D.; Okmen, B.; Beenen, H.G.; Van Liere, S.; Kema, G.H.J.; De Wit, P.J.G.M: Tomato Cf resistance proteins mediate recognition of cognate homologous effectors from fungi pathogenic on dicots and monocots. Proc. Natl. Acad. Sci. USA 2010, 107, 7610–7615.

Yi, H.; Richards, E.J: A cluster of disease resistance genes in arabidopsis is coordinately regulated by transcriptional activation and RNA silencing. Plant Cell 2007, 19, 2929–2939.

Li, F.; Pignatta, D.; Bendix, C.; Brunkard, J.O.; Cohn, M.M.; Tung, J.; Sun, H.; Kumar, P.; Baker, B. MicroRNA regulation of plant innate immune receptors. Proc. Natl. Acad. Sci. USA 2012, 109, 1790–1795.

Shivaprasad, P.V.; Chen, H.-M.; Patel, K.; Bond, D.M.; Santos, B.A.; Baulcombe, D.C. A : MicroRNA superfamily regulates nucleotide binding site–leucine-rich repeats and other mRNAs. Plant Cell 2012, 24, 859–874.

Zhai, J.; Jeong, D.-H.; De Paoli, E.; Park, S.; Rosen, B.D.; Li, Y.; González, A.J.; Yan, Z.; Kitto, S.L.; Grusak, M.A.; et al: MicroRNAs as master regulators of the plant NB-LRR defence gene family via the production of phased, trans-acting siRNAs. Genes Dev 2011, 25, 2540–2553.

Ouyang, S.; Park, G.; Atamian, H.S.; Han, C.S.; Stajich, J.E.; Kaloshian, I.; Borkovich, K.A.: MicroRNAs suppress NB domain genes in tomato that confer resistance to fusarium oxysporum. PLOS Pathog, 10, 2014, e1004464,.

Boccara, M.; Sarazin, A.; Thiébeauld, O.; Jay, F.; Voinnet, O.; Navarro, L.; Colot, V.: The arabidopsis miR472-RDR6 silencing pathway modulates PAMP- and effector-triggered immunity through the post-transcriptional control of disease resistance genes. PLOS Pathog 2014, 10.

Liu, J.; Cheng, X.; Liu, D.; Xu, W.; Wise, R.; Shen, Q.H.: The miR9863 family regulates distinct Mla alleles in barley to attenuate NLR receptor-triggered disease resistance and cell-death signalling. PLoS Genet 2014, 10, e1004755,.

Niu, D.; Lii, Y.E.; Chellappan, P.; Lei, L.; Peralta, K.; Jiang, C.; Guo, J.; Coaker, G.; Jin, H: miRNA863-3p sequentially targets negative immune regulator ARLPKs and positive regulator SERRATE upon bacterial infection. Nat. Commun 2016, 7, 1–13,.

Wang H, Jiao X, Kong X, Hamera S, Wu Y, Chen X, Fang R, Yan Y: A signalling cascade from miR444 to RDR1 in rice antiviral RNA silencing pathway. Plant Physiol 2016, 170:2365-2377,.

Mandadi KK, Scholthof K-BG: Plant immune responses against viruses: how does a virus cause disease Plant Cell 2013, 25:1489-1505,.

Wu J, Yang R, Yang Z, Yao S, Zhao S, Wang Y, Li P, Song X, Jin L, Zhou T et al.: ROS accumulation and antiviral defence control by microRNA528 in rice. Nat Plants 2017, 3:1-7,.

Li T, Li H, Zhang YX, Liu JY: Identification and analysis of seven H2O2-responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica). Nucleic Acids Res 2011, 39:2821-2833.

Pacheco R, Garcı´a-Marcos A, Barajas D, Martia´n˜ez J, Tenllado F: PVX–potyvirus synergistic infections differentially alter microRNA accumulation in Nicotiana benthamiana. Virus Res 2012, 165:231-235.

Bazzini AA, Hopp HE, Beachy RN, Asurmendi S: Infection and coaccumulation of tobacco mosaic virus proteins alter microRNA levels, correlating with symptom and plant development. Proc Natl Acad Sci U S A 2007, 104:12157-12162.

Yin H, Hong G, Li L, Zhang X, Kong Y, Sun Z, Li J, Chen J, He Y: MiR156/SPL9 regulates reactive oxygen species accumulation and immune response in Arabidopsis thaliana. Phytopathology 2019, 109:632-642.

Zhang C, Ding Z, Wu K, Yang L, Li Y, Yang Z, Shi S, Liu X, Zhao S, Yang Z et al.: Suppression of jasmonic acid-mediated defence by viral-inducible microRNA319 facilitates virus infection in rice. Mol Plant 2016, 9:1302-1314.

Wang S, Cui W, Wu X, Yuan Q, Zhao J, Zheng H, Lu Y, Peng J, Lin L, Chen J et al.: Suppression of nbe-miR166h-p5 attenuates leaf yellowing symptoms of potato virus X on Nicotiana benthamiana and reduces virus accumulation. Mol Plant Pathol 2018, 19:2384-2396.

Yin Z, Murawska Z, Xie F, Pawełkowicz M, Michalak K, Zhang B, Lebecka R: MicroRNA response in potato virus Y infected tobacco shows strain-specificity depending on host and symptom severity. Virus Res 2019, 260:20-32.

Padhan, J.K.; Kumar, P.; Sood, H.; Chauhan, R.S: Prospecting NGS-transcriptomes to assess regulation of miRNA-mediated secondary metabolites biosynthesis in Swertia chirayita, a medicinal herb of the North-Western Himalayas. Med. Plants 2016, 8, 219–228.

Qiao, Y.; Zhang, J.; Zhang, J.; Wang, Z.; Ran, A.; Guo, H.; Wang, D.; Zhang, J. Integrated RNA-seq and sRNA-seq analysis reveals miRNA effects on secondary metabolism in Solanum tuberosum L. Mol. Genet. Genom 2017, 292, 37–52.

Jian, H.; Yang, B.; Zhang, A.; Ma, J.-Q.; Ding, Y.; Chen, Z.; Li, J.-N.; Xu, X.; Liu, L: Genome-wide identification of micrornas in response to cadmium stress in oilseed rape (Brassica napus L.) using high-throughput sequencing. Int. J. Mol. Sci. 2018, 19, 1431.

Aires, A.; Mota, V.R.; Saavedra, M.J.; Monteiro, A.A.; Simões, M.; Rosa, E.A.S.; Bennett, R.N: Initial in vitro evaluations of the antibacterial activities of glucosinolate enzymatic hydrolysis products against plant pathogenic bacteria. J. Appl. Microbiol 2009, 106, 2096–2105.

Nafisi, M.; Goregaoker, S.; Botanga, C.J.; Glawischnig, E.; Olsen, C.E.; Halkier, B.A.; Glazebrook, J. Arabidopsis cytochrome P450 monooxygenase 71A13 catalyzes the conversion of Indole-3-acetaldoxime in camalexin synthesis. Plant Cell 2007, 19, 2039–2052.

Camargo-Ramírez, R.; Val-Torregrosa, B.; San Segundo, B: MiR858-mediated regulation of flavonoid-specific MYB transcription factor genes controls resistance to pathogen infection in Arabidopsis. Plant Cell Physiol 2018, 59, 190–204.

Srivastava, S.; Singh, R.; Srivastava, G.; Sharma, A. Comparative study of withanolide biosynthesis-related miRNAs in root and leaf tissues of withania somnifera. Appl. Biochem. Biotechnol 2018, 185, 1145–1159.

Zhang, M.; Dong, Y.; Nie, L.; Lu, M.; Fu, C.; Yu, L.J: High-throughput sequencing reveals miRNA effects on the primary and secondary production properties in long-term subcultured Taxus cells. Front. Plant Sci 2015, 6, 604,.

Jones-Rhoades, M.W.; Bartel, D.P: Computational identification of plant MicroRNAs and their targets, including a stress-induced miRNA. Mol. Cell 2004, 14, 787–799.

Ai, Q.; Liang, G.; Zhang, H.; Yu, D: Control of sulphate concentration by miR395-targeted APS genes in Arabidopsis thaliana. Plant Divers 2016, 38, 92–100.

Sunkar, R.; Zhu, J.K: Novel and stress regulated microRNAs and other small RNAs from Arabidopsis w inside box sign. Plant Cell 2004, 16, 2001–2019.

Lu, S.; Sun, Y.-H.; Shi, R.; Clark, C.; Li, L.; Chiang, V.L. Novel and mechanical stress-responsive microRNAs in populus trichocarpa that are absent from Arabidopsis. Plant Cell 2005, 17, 2186–2203.

Achard, P.; Herr, A.; Baulcombe, D.C.; Harberd, N.P : Modulation of floral development by a gibberellin-regulated microRNA. Development 2004, 131, 3357–3365.

Waheed, S.; Zeng, L: The critical role of miRNAs in regulation of flowering time and flower development. Genes 2020, 11, 319.

M. Transcriptional regulation of male-sterility in 7B-1 male-sterile tomato mutant. PLoS ONE 2017, 12, e0170715.

Devers EA, Branscheid A, May P, Krajinski F: Stars and symbiosis: microRNA- and microRNA*-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis. Plant Physiol 2011, 156:1990-2010.

Li H, Deng Y, Wu TL, Subramanian S, Yu O: Misexpression of miR482, miR1512, and miR1515 increases soybean nodulation. Plant Physiol 2010, 153:1759-1770.

Pacheco R, Garcı´a-Marcos A, Barajas D, Martia´n˜ez J, Tenllado F: PVX-potyvirus synergistic infections differentially alter microRNA accumulation in Nicotiana benthamiana. Virus Res 2012, 165:231-235.

Allen E, Xie Z, Gustafson AM, Carrington JC: MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 2005, 121:207-221.

Floss DS, Levy JG, Le´vesque-tremblay V, Pumplin N, Harrison MJ: DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. 2013, PNAS: 5025-5034.

Fonouni-Farde C, Tan S, Baudin M, Brault M, Wen J, Mysore KS, Niebel A, Frugier F, Diet A: DELLA-mediated gibberellin signalling regulates Nod factor signalling and rhizobial infection. Nat Commun 2016, 7:1-13.

Jin Y, Liu H, Luo D, Yu N, Dong W, Wang C, Zhang X, Dai H, Yang J, Wang E: DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways. Nat Commun 2016, 7:1-14.

Lelandais-Brie`re C, Naya L, Sallet E, Calenge F, Frugier F, Hartmann C, Gouzy J, Crespi M: Genome-wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules. Plant Cell 2009, 21:2780-2796.

Naqvi AR, Haq QMR, Mukherjee SK: MicroRNA profiling of tomato leaf curl new delhi virus (tolcndv) infected tomato leaves indicates that deregulation of mir159/319 and mir172 might be linked with leaf curl disease. Virol J 2010, 7:1-16.

Feng J, Wang Y, Lin R, Chen J: Altered expression of microRNAs and target mRNAs in tomato root and stem tissues upon different viral infections. J Phytopathol 2013, 161:107-119.

Tong A, Yuan Q, Wang S, Peng J, Lu Y, Zheng H, Lin L, Chen H, Gong Y, Chen J et al.: Altered accumulation of osa-miR171b contributes to rice stripe virus infection by regulating disease symptoms. J Exp Bot 2017, 68:4357-4367.

Havecker ER, Wallbridge LM, Hardcastle TJ, Bush MS, Kelly KA, Dunn RM, Schwach F, Doonan JH, Baulcombe DC: The Arabidopsis RNA-directed DNA methylation argonautes functionally diverge based on their expression and interaction with target loci. Plant Cell 2010, 22:321-334.

Olmedo-Monfil V, Duran-Figueroa N, Arteaga-Vazquez M, Demesa-Arevalo E, Autran D, Grimanelli D, Slotkin RK, Martienssen RA, Vielle-Calzada JP: Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 2010, 464:628-632.

Singh M, Goel S, Meeley RB, Dantec C, Parrinello H, Michaud C, Leblanc O, Grimanelli D: Production of viable gametes without meiosis in maize deficient for an ARGONAUTE protein. Plant Cell 2011, 23:443-458.

Nonomura K, Morohoshi A, Nakano M, Eiguchi M, Miyao A, Hirochika H, Kurata N: A germ cell specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice. Plant Cell 2007, 19:2583-2594.

Johnson C, Kasprzewska A, Tennessen K, Fernandes J, Nan GL, Walbot V, Sundaresan V, Vance V, Bowman LH: Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Res, 19:1429-1440.




DOI: https://doi.org/10.37628/ijpb.v9i1.854

Refbacks

  • There are currently no refbacks.