Open Access Open Access  Restricted Access Subscription or Fee Access

Riboswitches can be alternative targets to "switch off" the antimicrobial resistance: A computational perspective

Mallikarjunachari V N Uppuladinne, Uddhavesh Sonavane, Narasimhulu Korrapati

Abstract


Multidrug-resistant pathogenic microorganisms are a severe threat putting much strain on healthcare systems worldwide. In recent years, there have been numerous reports of severe bacterial illness epidemics across the globe. Therefore, there is an urgent need to create new antibiotics, find new vital targets, and investigate other creative strategies to combat medication resistance. The significance of RNA structure in cellular functions and disorders has been made clear by recent developments in our understanding of RNA biochemistry, structure, and molecular biology. Drug resistance and several strategies to combat it in bacteria are briefly described in this overview. The main emphasis is on riboswitches, which may be a different category of targets to assist in turning off bacterial drug resistance. It also goes over the in-silico techniques used to find RNA-targeted small-molecule drugs. The structural information of riboswitches, details on databases of small compounds unique to RNA macromolecules, and other proven computational techniques and tools frequently applied in RNA based drug development investigations have been covered. Developing or identifying new compounds targeted against riboswitches will undoubtedly benefit from all the data and information regarding the structures, methodologies, and frameworks discussed in this research. These methods can be used to learn about how riboswitches work and find new drugs that could be used to treat diseases.


Full Text:

PDF

References


Strathdee SA, Davies SC, Marcelin JR. Confronting antimicrobial resistance beyond the COVID-19 pandemic and the 2020 US election. The Lancet. 2020 Oct 10; 396 (10257): 1050–3.

Gajdács M, Albericio F. Antibiotic resistance: from the bench to patients. Antibiotics. 2019 Aug 27; 8 (3): 129.

Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H, Greko C. Antibiotic resistance—the need for global solutions. The Lancet infectious diseases. 2013 Dec 1; 13 (12): 1057–98.

Uddin TM, Chakraborty AJ, Khusro A, Zidan BR, Mitra S, Emran TB, Dhama K, Ripon MK, Gajdács M, Sahibzada MU, Hossain MJ. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. Journal of Infection and Public Health. 2021 Dec 1; 14 (12): 1750–66.

Watkins RR, Bonomo RA. Overview: global and local impact of antibiotic resistance. Infectious Disease Clinics. 2016 Jun 1; 30 (2): 313–22.

Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, Han C, Bisignano C, Rao P, Wool E, Johnson SC. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet. 2022 Feb 12; 399 (10325): 629–55.

Reen FJ, Gutiérrez-Barranquero JA, Parages ML. Coumarin: a novel player in microbial quorum sensing and biofilm formation inhibition. Applied Microbiology and Biotechnology. 2018 Mar; 102 (5): 2063–73.

Emmerich CH, Gamboa LM, Hofmann MC, Bonin-Andresen M, Arbach O, Schendel P, Gerlach B, Hempel K, Bespalov A, Dirnagl U, Parnham MJ. Improving target assessment in biomedical research: the GOT-IT recommendations. Nature reviews Drug discovery. 2021 Jan; 20 (1): 64–81.

Crooke ST, Witztum JL, Bennett CF, Baker BF. RNA-targeted therapeutics. Cell metabolism. 2018 Apr 3; 27 (4): 714–39.

Yin W, Rogge M. Targeting RNA: a transformative therapeutic strategy. Clinical and translational science. 2019 Mar; 12 (2): 98–112.

Yu AM, Jian C, Allan HY, Tu MJ. RNA therapy: Are we using the right molecules?. Pharmacology & therapeutics. 2019 Apr 1; 196: 91-104.

Mattick JS. RNA regulation: a new genetics?. Nature Reviews Genetics. 2004 Apr;5(4): 316-23.

Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C. Landscape of transcription in human cells. Nature. 2012 Sep; 489 (7414): 101–8.

Bader AG, Brown D, Winkler M. The Promise of MicroRNA Replacement TherapymicroRNA Replacement Therapy. Cancer research. 2010 Sep 15; 70 (18): 7027–30.

Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics—developing a new class of drugs. Nature reviews Drug discovery. 2014 Oct; 13 (10): 759–80.

Lieberman J. Tapping the RNA world for therapeutics. Nature structural & molecular biology. 2018 May;25(5): 357-64.

Ho PY, Yu AM. Bioengineering of noncoding RNAs for research agents and therapeutics. Wiley Interdisciplinary Reviews: RNA. 2016 Mar; 7 (2): 186–97.

Donlic A, Hargrove AE. Targeting RNA in mammalian systems with small molecules. Wiley Interdisciplinary Reviews: RNA. 2018 Jul; 9 (4): e1477.

Warner KD, Hajdin CE, Weeks KM. Principles for targeting RNA with drug-like small molecules. Nature reviews Drug discovery. 2018 Aug; 17 (8): 547–58.

Costales MG, Childs-Disney JL, Haniff HS, Disney MD. How we think about targeting RNA with small molecules. Journal of medicinal chemistry. 2020 Mar 26; 63 (17): 8880–900.

Chen L, Calin GA, Zhang S. Novel insights of structure-based modeling for RNA-targeted drug discovery. Journal of chemical information and modeling. 2012 Oct 22; 52 (10): 2741–53.

Moazed D, Noller HF. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature. 1987 Jun; 327 (6121): 389–94.

Spahn CM, Prescott CD. Throwing a spanner in the works: antibiotics and the translation apparatus. Journal of molecular medicine. 1996 Aug; 74 (8): 423–39.

Wilson DN. The A–Z of bacterial translation inhibitors. Critical reviews in biochemistry and molecular biology. 2009 Dec 1; 44 (6): 393–433.

Wilson DN. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nature Reviews Microbiology. 2014 Jan; 12 (1): 35-48.

Lin J, Zhou D, Steitz TA, Polikanov YS, Gagnon MG. Ribosome-targeting antibiotics: modes of action, mechanisms of resistance, and implications for drug design. Annual Review of Biochemistry. 2018 Jun 6; 87:451.

Hermann T. Small molecules targeting viral RNA. Wiley Interdisciplinary Reviews: RNA. 2016 Nov; 7 (6): 726–43.

McCown PJ, Corbino KA, Stav S, Sherlock ME, Breaker RR. Riboswitch diversity and distribution. Rna. 2017 Jul 1; 23 (7): 995–1011.

Deak D, Outterson K, Powers JH, Kesselheim AS. Progress in the fight against multidrug-resistant bacteria? A review of US Food and Drug Administration–approved antibiotics, 2010–2015. Annals of internal medicine. 2016 Sep 6; 165 (5): 363–72.

Haas M, Vlcek V, Balabanov P, Salmonson T, Bakchine S, Markey G, Weise M, Schlosser-Weber G, Brohmann H, Yerro CP, Mendizabal MR. European Medicines Agency review of ataluren for the treatment of ambulant patients aged 5 years and older with Duchenne muscular dystrophy resulting from a nonsense mutation in the dystrophin gene. Neuromuscular Disorders. 2015 Jan 1; 25 (1): 5–13.

Lünse CE, Schüller A, Mayer G. The promise of riboswitches as potential antibacterial drug targets. International Journal of Medical Microbiology. 2014 Jan 1; 304 (1): 79–92.

Deigan KE, FerrÉ-D’AmarÉ AR. Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs. Accounts of chemical research. 2011 Dec 20; 44 (12): 1329–38.

Tucker BJ, Breaker RR. Riboswitches as versatile gene control elements. Current opinion in structural biology. 2005 Jun 1; 15 (3): 342–8.

Hallberg ZF, Su Y, Kitto RZ, Hammond MC. Engineering and in vivo applications of riboswitches. Annu. Rev. Biochem. 2017 Jun 20; 86 (1): 515–39.

Winkler WC, Cohen-Chalamish S, Breaker RR. An mRNA structure that controls gene expression by binding FMN. Proceedings of the National Academy of Sciences. 2002 Dec 10; 99 (25):

–13.

Lee ER, Blount KF, Breaker RR. Roseoflavin is a natural antibacterial compound that binds to FMN riboswitches and regulates gene expression. RNA biology. 2009 Apr 1; 6 (2): 187–94.

Ren A, Wang XC, Kellenberger CA, Rajashankar KR, Jones RA, Hammond MC, Patel DJ. Structural basis for molecular discrimination by a 3′, 3′-cGAMP sensing riboswitch. Cell reports. 2015 Apr 7; 11 (1): 1–2.

Chauvier A, Picard-Jean F, Berger-Dancause JC, Bastet L, Naghdi MR, Dubé A, Turcotte P, Perreault J, Lafontaine DA. Transcriptional pausing at the translation start site operates as a critical checkpoint for riboswitch regulation. Nature communications. 2017 Jan 10; 8 (1): 1–2.

Serganov A, Nudler E. A decade of riboswitches. Cell. 2013 Jan 17; 152 (1–2): 17–24.

Trausch JJ, Xu Z, Edwards AL, Reyes FE, Ross PE, Knight R, Batey RT. Structural basis for diversity in the SAM clan of riboswitches. Proceedings of the National Academy of Sciences. 2014 May 6; 111 (18): 6624–9

Pavlova N, Kaloudas D, Penchovsky R. Riboswitch distribution, structure, and function in bacteria. Gene. 2019 Aug 5; 708: 38–48.

Donovan PD, Holland LM, Lombardi L, Coughlan AY, Higgins DG, Wolfe KH, Butler G. TPP riboswitch-dependent regulation of an ancient thiamin transporter in Candida. PLoS genetics. 2018 May 31; 14 (5): e1007429.

Moldovan MA, Petrova SA, Gelfand MS. Comparative genomic analysis of fungal TPP-riboswitches. Fungal Genetics and Biology. 2018 May 1; 114: 34–41.

Cheah MT, Wachter A, Sudarsan N, Breaker RR. Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature. 2007 May; 447 (7143): 497–500.

Croft MT, Moulin M, Webb ME, Smith AG. Thiamine biosynthesis in algae is regulated by riboswitches. Proceedings of the National Academy of Sciences. 2007 Dec 26; 104 (52): 20770-5.

Bocobza S, Adato A, Mandel T, Shapira M, Nudler E, Aharoni A. Riboswitch-dependent gene regulation and its evolution in the plant kingdom. Genes & development. 2007 Nov 15; 21 (22): 2874–9.

Yang X, Lai JL, Zhang Y, Luo XG. Toxicity analysis of TNT to alfalfa's mineral nutrition and secondary metabolism. Plant Cell Reports. 2022 May; 41 (5): 1273–84.

Mandal M, Boese B, Barrick JE, Winkler WC, Breaker RR. Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell. 2003 May 30; 113(5): 577–86.

Thore S, Leibundgut M, Ban N. Structure of the eukaryotic thiamine pyrophosphate riboswitch with its regulatory ligand. Science. 2006 May 26;312(5777): 1208-11.

Lim J, Winkler WC, Nakamura S, Scott V, Breaker RR. Molecular‐Recognition Characteristics of SAM‐Binding Riboswitches. Angewandte Chemie. 2006 Jan 30; 118 (6): 978–82.

Roth A, Breaker RR. The structural and functional diversity of metabolite-binding riboswitches. Annual review of biochemistry. 2009; 78: 305.

Serganov A. Determination of riboswitch structures: light at the end of the tunnel?. RNA biology. 2010 Jan 1; 7 (1): 98–103.

Garst AD, Edwards AL, Batey RT. Riboswitches: structures and mechanisms. Cold Spring Harbor perspectives in biology. 2011 Jun 1; 3 (6): a003533.

Warner KD, Homan P, Weeks KM, Smith AG, Abell C, Ferré-D’Amaré AR. Validating fragment-based drug discovery for biological RNAs: lead fragments bind and remodel the TPP riboswitch specifically. Chemistry & biology. 2014 May 22; 21 (5): 591–5.

Rekand IH, Brenk R. Ligand design for riboswitches, an emerging target class for novel antibiotics. Future Medicinal Chemistry. 2017 Sep; 9 (14): 1649–63.

Vicens Q, Mondragón E, Reyes FE, Coish P, Aristoff P, Berman J, Kaur H, Kells KW, Wickens P, Wilson J, Gadwood RC. Structure–activity relationship of flavin analogues that target the flavin mononucleotide riboswitch. ACS chemical biology. 2018 Aug 14; 13 (10): 2908–19.

Melander RJ, Zurawski DV, Melander C. Narrow-spectrum antibacterial agents. Medchemcomm. 2018; 9 (1): 12–21.

Panchal V, Brenk R. Riboswitches as drug targets for antibiotics. Antibiotics. 2021 Jan 5;10(1): 45.

Ren, A. & Patel, D. J. c-di-AMP binds the ydaO riboswitch in two pseudo-symmetry-related pockets. Nat. Chem. Biol. 10, 780–786 (2014).

Serganov, A., Huang, L. & Patel, D. J. Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch. Nature 458, 233–237 (2009).

Matyjasik, M. M., Hall, S. D. & Batey, R. T. High Affinity Binding of N2-Modified Guanine Derivatives Significantly Disrupts the Ligand Binding Pocket of the Guanine Riboswitch. Molecules 25, (2020).

Cochrane, J. C., Lipchock, S. V. & Strobel, S. A. Structural investigation of the GlmS ribozyme bound to Its catalytic cofactor. Chem. Biol. 14, 97–105 (2007).

Garst, A. D., Héroux, A., Rambo, R. P. & Batey, R. T. Crystal structure of the lysine riboswitch regulatory mRNA element. J. Biol. Chem. 283, 22347–22351 (2008).

Krausze, J., Hercher, T. W., Archna, A. & Kruse, T. The structure of the Moco carrier protein from Rippkaea orientalis. Acta Crystallogr. Sect. F, Struct. Biol. Commun. 76, 453–463 (2020).

Jenkins, J. L., Krucinska, J., McCarty, R. M., Bandarian, V. & Wedekind, J. E. Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation. J. Biol. Chem. 286, 24626–24637 (2011).

Liberman, J. A., Salim, M., Krucinska, J. & Wedekind, J. E. Structure of a class II preQ1 riboswitch reveals ligand recognition by a new fold. Nat. Chem. Biol. 9, 353–355 (2013).

Liberman, J. A. et al. Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics. Proc. Natl. Acad. Sci. U. S. A. 112, E3485–E3494 (2015).

Lu, C. et al. SAM recognition and conformational switching mechanism in the Bacillus subtilis yitJ S box/SAM-I riboswitch. J. Mol. Biol. 404, 803–818 (2010).

Gilbert, S. D., Rambo, R. P., Van Tyne, D. & Batey, R. T. Structure of the SAM-II riboswitch bound to S-adenosylmethionine. Nat. Struct. Mol. Biol. 15, 177–182 (2008).

Zhang, K. et al. Cryo-EM structure of a 40 kDa SAM-IV riboswitch RNA at 3.7 Å resolution. Nat. Commun. 10, (2019).

Edwards, A. L., Reyes, F. E., Héroux, A. & Batey, R. T. Structural basis for recognition of S-adenosylhomocysteine by riboswitches. RNA 16, 2144–2155 (2010).

Huang, L., Liao, T. W., Wang, J., Ha, T. & Lilley, D. M. J. Crystal structure and ligand- induced folding of the SAM/SAH riboswitch. Nucleic Acids Res. 48, 7545–7556 (2020).

Lu, C. et al. Crystal structures of the SAM-III/S(MK) riboswitch reveal the SAM-dependent translation inhibition mechanism. Nat. Struct. Mol. Biol. 15, 1076–1083 (2008).

Serganov, A., Polonskaia, A., Phan, A. T., Breaker, R. R. & Patel, D. J. Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature 441, 1167– 1171 (2006).

Sudarsan N, Cohen-Chalamish S, Nakamura S, Emilsson GM, Breaker RR. Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine. Chemistry & biology. 2005 Dec 1; 12 (12): 1325–35.

Bian J, Shen H, Tu Y, Yu A, Li C. The riboswitch regulates a thiamine pyrophosphate ABC transporter of the oral spirochete Treponema denticola. Journal of bacteriology. 2011 Aug 1; 193 (15): 3912–22.

Bocobza SE, Aharoni A. Small molecules that interact with RNA: riboswitch‐based gene control and its involvement in metabolic regulation in plants and algae. The Plant Journal. 2014 Aug; 79 (4): 693–703.

Pavlova N, Penchovsky R. Genome-wide bioinformatics analysis of FMN, SAM-I, glmS, TPP, lysine, purine, cobalamin, and SAH riboswitches for their applications as allosteric antibacterial drug targets in human pathogenic bacteria. Expert opinion on therapeutic targets. 2019 Jul 3; 23 (7): 631–43.

Woolley DW, White AG. Selective reversible inhibition of microbial growth with pyrithiamine. The Journal of Experimental Medicine. 1943 Dec 1; 78 (6): 489–97.

Chen L, Cressina E, Dixon N, Erixon K, Agyei-Owusu K, Micklefield J, Smith AG, Abell C, Leeper FJ. Probing riboswitch–ligand interactions using thiamine pyrophosphate analogues. Organic & biomolecular chemistry. 2012; 10 (30): 5924–31.

Lünse CE, Scott FJ, Suckling CJ, Mayer G. Novel TPP-riboswitch activators bypass metabolic enzyme dependency. Frontiers in chemistry. 2014 Jul 28; 2: 53.

Thore S, Frick C, Ban N. Structural basis of thiamine pyrophosphate analogues binding to the eukaryotic riboswitch. Journal of the American Chemical Society. 2008 Jul 2; 130 (26): 8116–7.

Gelfand MS, Mironov AA, Jomantas J, Kozlov YI, Perumov DA. A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes. Trends in Genetics. 1999 Nov 1; 15 (11): 439–42.

Lu J, Holmgren A. The thioredoxin antioxidant system. Free Radical Biology and Medicine. 2014 Jan 8; 66: 75–87.

Cook GM, Greening C, Hards K, Berney M. Energetics of pathogenic bacteria and opportunities for drug development. Advances in microbial physiology. 2014 Jan 1; 65: 1–62.

Choi M, Karunaratne K, Kohen A. Flavin-dependent thymidylate synthase as a new antibiotic target. Molecules. 2016 May 20; 21 (5): 654.

Howe JA, Wang H, Fischmann TO, Balibar CJ, Xiao L, Galgoci AM, Malinverni JC, Mayhood T, Villafania A, Nahvi A, Murgolo N. Selective small-molecule inhibition of an RNA structural element. Nature. 2015 Oct; 526 (7575): 672–7.

Motika SE, Ulrich RJ, Geddes EJ, Lee HY, Lau GW, Hergenrother PJ. Gram-negative antibiotic active through inhibition of an essential riboswitch. Journal of the American Chemical Society. 2020 May 20; 142 (24): 10856–62.

Mack M, Grill S. Riboflavin analogs and inhibitors of riboflavin biosynthesis. Applied microbiology and biotechnology. 2006 Jul; 71 (3): 265–75.

Otani S, Takatsu M, Nakano M, Kasai S, Miura R, Matsui K. Roseoflavin, a new antimicrobial pigment from Streptomyces. The Journal of antibiotics. 1974; 27 (1): 88–9.

Ott E, Stolz J, Mack M. The RFN riboswitch of Bacillus subtilis is a target for the antibiotic roseoflavin produced by Streptomyces davawensis. RNA biology. 2009 Jul 1; 6 (3): 276–80.

Mansjö M, Johansson J. The Riboflavin analog Roseoflavin targets an FMN-riboswitch and blocks Listeria monocytogene s growth, but also stimulates virulence gene-expression and infection. RNA biology. 2011 Jul 1; 8 (4): 674–80.

Pedrolli DB, Jankowitsch F, Schwarz J, Langer S, Nakanishi S, Mack M. Natural riboflavin analogs. Flavins and Flavoproteins. 2014:41-63.

Matern A, Pedrolli D, Großhennig S, Johansson J, Mack M. Uptake and metabolism of antibiotics roseoflavin and 8-demethyl-8-aminoriboflavin in riboflavin-auxotrophic Listeria monocytogenes. Journal of bacteriology. 2016 Dec 1; 198 (23): 3233–43.

Vicens Q, Mondragón E, Batey RT. Molecular sensing by the aptamer domain of the FMN riboswitch: a general model for ligand binding by conformational selection. Nucleic acids research. 2011 Oct 1; 39 (19): 8586–98.

Blount KF, Megyola C, Plummer M, Osterman D, O'Connell T, Aristoff P, Quinn C, Chrusciel RA, Poel TJ, Schostarez HJ, Stewart CA. Novel riboswitch-binding flavin analog that protects mice against Clostridium difficile infection without inhibiting cecal flora. Antimicrobial agents and chemotherapy. 2015 Sep 1; 59 (9): 5736–46.

Howe JA, Xiao L, Fischmann TO, Wang H, Tang H, Villafania A, Zhang R, Barbieri CM, Roemer T. Atomic resolution mechanistic studies of ribocil: a highly selective unnatural ligand mimic of the E. coli FMN riboswitch. RNA biology. 2016 Oct 2; 13 (10): 946–54.

Rizvi NF, Howe JA, Nahvi A, Klein DJ, Fischmann TO, Kim HY, McCoy MA, Walker SS, Hruza A, Richards MP, Chamberlin C. Discovery of selective RNA-binding small molecules by affinity-selection mass spectrometry. ACS chemical biology. 2018 Feb 7; 13 (3): 820–31.

Baird NJ, Ferré-D'Amaré AR. Idiosyncratically tuned switching behavior of riboswitch aptamer domains revealed by comparative small-angle X-ray scattering analysis. Rna. 2010 Mar 1;16(3): 598-609.

Wang H, Mann PA, Xiao L, Gill C, Galgoci AM, Howe JA, Villafania A, Barbieri CM, Malinverni JC, Sher X, Mayhood T. Dual-targeting small-molecule inhibitors of the Staphylococcus aureus FMN riboswitch disrupt riboflavin homeostasis in an infectious setting. Cell chemical biology. 2017 May 18; 24 (5): 576–88.

Milewski S. Glucosamine-6-phosphate synthase—the multi-facets enzyme. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology. 2002 Jun 3; 1597 (2): 173–92.

McCown PJ, Roth A, Breaker RR. An expanded collection and refined consensus model of glmS ribozymes. Rna. 2011 Apr 1; 17 (4): 728–36.

Winkler WC, Nahvi A, Roth A, Collins JA, Breaker RR. Control of gene expression by a natural metabolite-responsive ribozyme. Nature. 2004 Mar; 428 (6980): 281–6.

Xin Y, Hamelberg D. Deciphering the role of glucosamine-6-phosphate in the riboswitch action of glmS ribozyme. Rna. 2010 Dec 1; 16 (12): 2455–63.

Collins JA, Irnov I, Baker S, Winkler WC. Mechanism of mRNA destabilization by the glmS ribozyme. Genes & development. 2007 Dec 15; 21 (24): 3356–68.

Khan MA, Göpel Y, Milewski S, Görke B. Two small RNAs conserved in Enterobacteriaceae provide intrinsic resistance to antibiotics targeting the cell wall biosynthesis enzyme glucosamine-6-phosphate synthase. Frontiers in microbiology. 2016 Jun 15; 7: 908.

Wojciechowski M, Milewski S, Mazerski J, Borowski E. Glucosamine-6-phosphate synthase, a novel target for antifungal agents. Molecular modelling studies in drug design. Acta Biochimica Polonica. 2005 Aug 4; 52 (3): 647–53.

Komatsuzawa, H. et al. The gate controlling cell wall synthesis in Staphylococcus aureus. Mol. Microbiol. 53, 1221–1231 (2004).

McCarthy, T. J. et al. Ligand requirements for glmS ribozyme self-cleavage. Chem. Biol. 12, 1221–1226 (2005).

Cochrane, J. C., Lipchock, S. V., Smith, K. D. & Strobel, S. A. Structural and chemical basis for glucosamine 6-phosphate binding and activation of the glmS ribozyme. Biochemistry 48, 3239–3246 (2009).

Klein, D. J., Wilkinson, S. R., Been, M. D. & Ferré-D’Amaré, A. R. Requirement of helix P2.2 and nucleotide G1 for positioning the cleavage site and cofactor of the glmS ribozyme. J. Mol. Biol. 373, 178–189 (2007).

Cochrane, J. C., Lipchock, S. V. & Strobel, S. A. Structural investigation of the GlmS ribozyme bound to Its catalytic cofactor. Chem. Biol. 14, 97–105 (2007).

Klein, D. J. & Ferré-D’Amaré, A. R. Structural basis of glmS ribozyme activation by glucosamine-6-phosphate. Science 313, 1752–1756 (2006).

Blount, K., Puskarz, I., Penchovsky, R. & Breaker, R. Development and application of a high-throughput assay for glmS riboswitch activators. RNA Biol. 3, 77–81 (2006).

Lim, J., Grove, B. C., Roth, A. & Breaker, R. R. Characteristics of ligand recognition by a glmS self-cleaving ribozyme. Angew. Chem. Int. Ed. Engl. 45, 6689–6693 (2006).

Mayer, G. & Famulok, M. High-throughput-compatible assay for glmS riboswitch metabolite dependence. Chembiochem 7, 602–604 (2006).

Lünse, C. E., Schmidt, M. S., Wittmann, V. & Mayer, G. Carba-sugars activate the glmS-riboswitch of Staphylococcus aureus. ACS Chem. Biol. 6, 675–678 (2011).

Matzner, D., Schüller, A., Seitz, T., Wittmann, V. & Mayer, G. Fluoro-Carba-Sugars are Glycomimetic Activators of the glmS Ribozyme. Chemistry 23, 12604–12612 (2017).

Fei, X. et al. Phosphatase-inert glucosamine 6-phosphate mimics serve as actuators of the glmS riboswitch. ACS Chem. Biol. 9, 2875–2882 (2014).

Kim, J. N. et al. Design and antimicrobial action of purine analogues that bind Guanine riboswitches. ACS Chem. Biol. 4, 915–927 (2009).

Serganov, A. et al. Structural basis for discriminative regulation of gene expression by adenine-and guanine-sensing mRNAs. Chem. Biol. 11, 1729–1741 (2004).

Batey, R. T., Gilbert, S. D. & Montange, R. K. Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature 432, 411–415 (2004).

Nagao, M. et al. Mutagenic properties of 2-amino-N6-hydroxyadenine in Salmonella and in Chinese hamster lung cells in culture. Mutat. Res. 253, 97–102 (1991).

Tsuchiyama, H., Atsumi, G. ichi, Matsuda, A., Negishi, K. & Hayatsu, H. Analysis of 2-amino-N6-hydroxyadenine-induced mutagenesis in phage M13mp2. Mutat. Res. 253, 47–54 (1991).

Mulhbacher, J. et al. Novel riboswitch ligand analogs as selective inhibitors of guanine-related metabolic pathways. PLoS Pathog. 6, 1–11 (2010).

Yan, L. H. et al. Purine analogs targeting the guanine riboswitch as potential antibiotics against Clostridioides difficile. Eur. J. Med. Chem. 143, 755–768 (2018).

Ster, C. et al. Experimental treatment of Staphylococcus aureus bovine intramammary infection using a guanine riboswitch ligand analog. J. Dairy Sci. 96, 1000–1008 (2013).

Kofoed, E. M. et al. De Novo Guanine Biosynthesis but Not the Riboswitch-Regulated Purine Salvage Pathway Is Required for Staphylococcus aureus Infection In Vivo. J. Bacteriol. 198, 2001–2015 (2016).

Jain, S. S. et al. Structural insights into the interactions of xpt riboswitch with novel guanine analogues: a molecular dynamics simulation study. J. Biomol. Struct. Dyn. 33, 234–243 (2015).

Pavlova, N. & Penchovsky, R. Bioinformatics and Genomic Analyses of the Suitability of Eight Riboswitches for Antibacterial Drug Targets. Antibiotics 11, (2022).

Giarimoglou, N. et al. A Riboswitch-Driven Era of New Antibacterials. Antibiotics 11, 1– 27 (2022).

Nahvi, A., Barrick, J. E. & Breaker, R. R. Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. Nucleic Acids Res. 32, 143–150 (2004).

Pavlova, N. & Penchovsky, R. Genome-wide bioinformatics analysis of FMN, SAM-I, glmS, TPP, lysine, purine, cobalamin, and SAH riboswitches for their applications as allosteric antibacterial drug targets in human pathogenic bacteria. Expert Opin. Ther. Targets 23, 631–643 (2019).

Giarimoglou, N. et al. A Riboswitch-Driven Era of New Antibacterials. Antibiot. (Basel, Switzerland) 11, (2022).

Hughes, J. P., Rees, S. S., Kalindjian, S. B. & Philpott, K. L. Principles of early drug discovery. Br. J. Pharmacol. 162, 1239–1249 (2011).

Nantasenamat, C. & Prachayasittikul, V. Maximizing computational tools for successful drug discovery. Expert Opin. Drug Discov. 10, 321–329 (2015).

Sliwoski, G., Kothiwale, S., Meiler, J. & Lowe, E. W. Computational methods in drug discovery. Pharmacol. Rev. 66, 334–395 (2013).

Doman, T. N. et al. Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B. J. Med. Chem. 45, 2213–2221 (2002).

Shi, Z. et al. AC1MMYR2, an inhibitor of dicer-mediated biogenesis of Oncomir miR-21, reverses epithelial-mesenchymal transition and suppresses tumor growth and progression. Cancer Res. 73, 5519–5531 (2013).

Connelly, C. M. et al. Synthetic ligands for PreQ1 riboswitches provide structural and mechanistic insights into targeting RNA tertiary structure. Nat. Commun. 10, (2019).

Irwin, J.J. & Shoichet, B. K. Docking Screens for Novel Ligands Conferring New Biology. J. Med. Chem. 59, 4103–4120 (2016).

Clark, D.E. Virtual Screening: Is Bigger Always Better? Or Can Small Be Beautiful? J. Chem. Inf. Model. 60, 4120–4123 (2020).

Lang, P.T. et al. DOCK 6: combining techniques to model RNA-small molecule complexes. RNA 15, 1219–1230 (2009).

Ruiz-Carmona, S. et al. rDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids. PLoS Comput. Biol. 10, (2014).

Pfeffer, P. & Gohlke, H. DrugScoreRNA--knowledge-based scoring function to predict RNA-ligand interactions. J. Chem. Inf. Model. 47, 1868–1876 (2007).

Philips, A., Milanowska, K., Łach, G. & Bujnicki, J. M. LigandRNA: computational predictor of RNA-ligand interactions. RNA 19, 1605–1616 (2013).

Guilbert, C. & James, T.L. Docking to RNA via root-mean-square-deviation-driven energy minimization with flexible ligands and flexible targets. J. Chem. Inf. Model. 48, 1257–1268 (2008).

Morley, S.D. & Afshar, M. Validation of an empirical RNA-ligand scoring function for fast flexible docking using Ribodock. J. Comput. Aided. Mol. Des. 18, 189–208 (2004).

Sun, L. Z., Jiang, Y., Zhou, Y. & Chen, S. J. RLDOCK: A New Method for Predicting RNA-Ligand Interactions. J. Chem. Theory Comput. 16, 7173–7183 (2020).

Stefaniak, F. & Bujnicki, J. M. AnnapuRNA: A scoring function for predicting RNA-small molecule binding poses. PLoS Comput. Biol. 17, (2021).

Thomas, J. R. & Hergenrother, P. J. Targeting RNA with small molecules. Chem. Rev. 108, 1171–1224 (2008).

Kuntz, I. D. Structure-based strategies for drug design and discovery. Science 257, 1078–1082 (1992).

Śledź, P. & Caflisch, A. Protein structure-based drug design: from docking to molecular dynamics. Curr. Opin. Struct. Biol. 48, 93–102 (2018).

Yadav, M., Dhagat, S. & Eswari, J.S. Structure Based Drug Design and Molecular Docking Studies of Anticancer Molecules Paclitaxel, Etoposide and Topotecan using Novel Ligands. Curr. Drug Discov. Technol. 17, 183–190 (2020).

Batool, M., Ahmad, B. & Choi, S. A Structure-Based Drug Discovery Paradigm. Int. J. Mol. Sci. 20, (2019).

Ganser, L.R. et al. Probing RNA Conformational Equilibria within the Functional Cellular Context. Cell Rep. 30, 2472–2480.e4 (2020).

Ganser, L.R. et al. High-performance virtual screening by targeting a high-resolution RNA dynamic ensemble. Nat. Struct. Mol. Biol. 25, 425–434 (2018).

Shi, H. et al. Rapid and accurate determination of atomistic RNA dynamic ensemble models using NMR and structure prediction. Nat. Commun. 11, (2020).

Liu, B., Shi, H. & Al-Hashimi, H.M. Developments in solution-state NMR yield broader and deeper views of the dynamic ensembles of nucleic acids. Curr. Opin. Struct. Biol. 70, 16–25 (2021).

Zhang, Q., Sun, X., Watt, E.D. & Al-Hashimi, H. M. Resolving the motional modes that code for RNA adaptation. Science 311, 653–656 (2006).

Frank, A. T., Stelzer, A. C., Al-Hashimi, H. M. & Andricioaei, I. Constructing RNA dynamical ensembles by combining MD and motionally decoupled NMR RDCs: new insights into RNA dynamics and adaptive ligand recognition. Nucleic Acids Res. 37, 3670–3679 (2009).

De Vivo, M., Masetti, M., Bottegoni, G. & Cavalli, A. Role of Molecular Dynamics and Related Methods in Drug Discovery. J. Med. Chem. 59, 4035–4061 (2016).

Villa, A., Wöhnert, J. & Stock, G. Molecular dynamics simulation study of the binding of purine bases to the aptamer domain of the guanine sensing riboswitch. Nucleic Acids Res. 37, 4774–4786 (2009).

Ling, B. et al. Theoretical studies on the interaction of modified pyrimidines and purines with purine riboswitch. J. Mol. Graph. Model. 28, 37–45 (2009).

Hu, G., Ma, A. & Wang, J. Ligand Selectivity Mechanism and Conformational Changes in Guanine Riboswitch by Molecular Dynamics Simulations and Free Energy Calculations. J. Chem. Inf. Model. 57, 918–928 (2017).

Chen, J., Wang, X., Pang, L., Zhang, J. Z. H. & Zhu, T. Effect of mutations on binding of ligands to guanine riboswitch probed by free energy perturbation and molecular dynamics simulations. Nucleic Acids Res. 47, 6618–6631 (2019).

Di Palma, F., Colizzi, F. & Bussi, G. Ligand-induced stabilization of the aptamer terminal helix in the add adenine riboswitch. RNA 19, 1517–1524 (2013).

Hu, G., Li, H., Xu, S. & Wang, J. Ligand Binding Mechanism and Its Relationship with Conformational Changes in Adenine Riboswitch. Int. J. Mol. Sci. 21, (2020).

Sund, J., Lind, C. & Åqvist, J. Binding site preorganization and ligand discrimination in the purine riboswitch. J. Phys. Chem. B 119, 773–782 (2015).

Banáŝ, P., Sklenovský, P., Wedekind, J. E., Ŝponer, J. & Otyepka, M. Molecular mechanism of preQ1 riboswitch action: a molecular dynamics study. J. Phys. Chem. B 116, 12721–12734 (2012).

Stoddard, C.D. et al. Free state conformational sampling of the SAM-I riboswitch aptamer domain. Structure 18, 787–797 (2010).

Huang, W., Kim, J., Jha, S. & Aboul-ela, F. The impact of a ligand binding on strand migration in the SAM-I riboswitch. PLoS Comput. Biol. 9, (2013).

Mishra, S. K. & Kumar, A. NALDB: nucleic acid ligand database for small molecules targeting nucleic acid. Database (Oxford). 2016, (2016).

Sun, S., Yang, J. & Zhang, Z. RNALigands: a database and web server for RNA-ligand interactions. RNA 28, 115–122 (2022).

Donlic, A. et al. R-BIND 2.0: An Updated Database of Bioactive RNA-Targeting Small Molecules and Associated RNA Secondary Structures. ACS Chem. Biol. 17, 1556–1566 (2022).

Mehta, A. et al. SMMRNA: a database of small molecule modulators of RNA. Nucleic Acids Res. 42, (2014).

Panei, F.P., Torchet, R., Ménager, H., Gkeka, P. & Bonomi, M. HARIBOSS: a curated database of RNA-small molecules structures to aid rational drug design. Bioinformatics 38, (2022).

Umuhire Juru, A. & Hargrove, A. E. Frameworks for targeting RNA with small molecules. J. Biol. Chem. 296, 100191 (2021).

Mohanraj, K. et al. IMPPAT: A curated database of Indian Medicinal Plants, Phytochemistry and Therapeutics. Sci. Rep. 8, (2018).

Meetei, P.A. et al. NeMedPlant: a database of therapeutic applications and chemical constituents of medicinal plants from north-east region of India. Bioinformation 8, 209– 211 (2012).

Hussain, N. et al. MPDB 2.0: a large scale and integrated medicinal plant database of Bangladesh. BMC Res. Notes 14, (2021).

Mumtaz, A. et al. MPD3: a useful medicinal plants database for drug designing. Nat. Prod. Res. 31, 1228–1236 (2017).

Kumar, Y. et al. AromaDb: A Database of Medicinal and Aromatic Plant’s Aroma Molecules with Phytochemistry and Therapeutic Potentials. Front. Plant Sci. 9, (2018).

Lyu, C. et al. CMNPD: a comprehensive marine natural products database towards facilitating drug discovery from the ocean. Nucleic Acids Res. 49, D509–D515 (2021).

Jones, M.R. et al. CyanoMetDB, a comprehensive public database of secondary metabolites from cyanobacteria. Water Res. 196, (2021).

Finn, R.D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39, (2011).

Nawrocki, E. P., Kolbe, D. L. & Eddy, S. R. Infernal 1.0: inference of RNA alignments. Bioinformatics 25, 1335–1337 (2009).

Bengert, P. & Dandekar, T. Riboswitch finder--a tool for identification of riboswitch RNAs. Nucleic Acids Res. 32, (2004).

Abreu-Goodger, C. & Merino, E. RibEx: a web server for locating riboswitches and other conserved bacterial regulatory elements. Nucleic Acids Res. 33, (2005).

Huang, H. Y., Chien, C.H., Jen, K. H. & Huang, H. Da. RegRNA: an integrated web server for identifying regulatory RNA motifs and elements. Nucleic Acids Res. 34, (2006).

Mukherjee, S. & Sengupta, S. Riboswitch Scanner: an efficient pHMM-based web-server to detect riboswitches in genomic sequences. Bioinformatics 32, 776–778 (2016).

Gruber, A. R., Lorenz, R., Bernhart, S. H., Neuböck, R. & Hofacker, I. L. The Vienna RNA websuite. Nucleic Acids Res. 36, (2008).

Reuter, J. S. & Mathews, D.H. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 11, (2010).

Bellaousov, S., Reuter, J.S., Seetin, M. G. & Mathews, D.H. RNAstructure: Web servers for RNA secondary structure prediction and analysis. Nucleic Acids Res. 41, (2013).

Bernhart, S. H., Hofacker, I.L., Will, S., Gruber, A.R. & Stadler, P. F. RNAalifold: improved consensus structure prediction for RNA alignments. BMC Bioinformatics 9, (2008).

Will, S., Joshi, T., Hofacker, I.L., Stadler, P.F. & Backofen, R. LocARNA-P: accurate boundary prediction and improved detection of structural RNAs. RNA 18, 900–914 (2012).

Sato, K., Kato, Y., Hamada, M., Akutsu, T. & Asai, K. IPknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming. Bioinformatics 27, (2011).

Kato, Y., Sato, K., Asai, K. & Akutsu, T. Rtips: fast and accurate tools for RNA 2D structure prediction using integer programming. Nucleic Acids Res. 40, (2012).

Tan, Z., Fu, Y., Sharma, G. & Mathews, D. H. TurboFold II: RNA structural alignment and secondary structure prediction informed by multiple homologs. Nucleic Acids Res. 45, 11570–11581 (2017).

Parisien, M. & Major, F. The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 452, 51–55 (2008).

Sharma, S., Ding, F. & Dokholyan, N. V. iFoldRNA: three-dimensional RNA structure prediction and folding. Bioinformatics 24, 1951–1952 (2008).

Krokhotin, A., Houlihan, K. & Dokholyan, N. V. iFoldRNA v2: folding RNA with constraints. Bioinformatics 31, 2891–2893 (2015).

Rother, M., Rother, K., Puton, T. & Bujnicki, J. M. ModeRNA: a tool for comparative modeling of RNA 3D structure. Nucleic Acids Res. 39, 4007–4022 (2011).

Rother, M. et al. ModeRNA server: an online tool for modeling RNA 3D structures. Bioinformatics 27, 2441–2442 (2011).

Xu, X., Zhao, P. & Chen, S. J. V fold: a web server for RNA structure and folding thermodynamics prediction. PLoS One 9, (2014).

Popenda, M. et al. Automated 3D structure composition for large RNAs. Nucleic Acids Res. 40, (2012).

Purzycka, K. J. et al. Automated 3D RNA structure prediction using the RNAComposer method for riboswitches. Methods Enzymol. 553, 3–34 (2015).

Zhang, Y., Wang, J. & Xiao, Y. 3dRNA: 3D Structure Prediction from Linear to Circular RNAs. J. Mol. Biol. 434, (2022).

Zhang, Y., Wang, J. & Xiao, Y. 3dRNA: Building RNA 3D structure with improved template library. Comput. Struct. Biotechnol. J. 18, 2416–2423 (2020).

Boniecki, M. J. et al. SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction. Nucleic Acids Res. 44, (2016).




DOI: https://doi.org/10.37628/ijmb.v8i2.815

Refbacks

  • There are currently no refbacks.