Open Access Open Access  Restricted Access Subscription or Fee Access

A Short review on Gene Editing in Bioinformatics by computational tools

Nidhi Aggarwal

Abstract


Engineered nucleases have recently been proven to hold significant promise in a number of therapeutic and biotechnological uses. The continually developing ecosystem of computer tools aimed at facilitating experimental method and result analysis reflects the rapid advancement in the field of CRISPR-Cas. The CRISPR-Cas system has revolutionized genome engineering and has become a cutting-edge technology. In most professions that require a specific DNA alteration, Cas9 nuclease is currently the tool of choice. The first set of CRISPR-Cas tools we'll look at is intended to help with guide RNA design by predicting their effectiveness and specificity. The second, more recent set of tools uses known biases in repair outcomes to predict the consequences of CRISPR-Cas alterations. The final set of tools is designed to aid in the examination of sequencing data in order to assess the editing results. Appropriate sources and databases are included with these utilities. From the standpoint of a user which needs a quick and reliable method to facilitate gene - editing operations at each and every step, from guide RNA design to analysis of editing outcomes, we give a thorough and updated review of the currently available CRISPR-Cas-related technologies.


Keywords


genome editing, CRISPR, database, tools, purpose

Full Text:

PDF

References


W. Cho, S. Kim, J.M. Kim, J.S. Kim. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol, 31 (2013), pp. 230-232

W.Y. Hwang, Y. Fu, D. Reyon, M.L. Maeder, S.Q. Tsai, J.D. Sander, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol, 31 (2013), pp. 227-229

W. Jiang, D. Bikard, D. Cox, F. Zhang, L.A. Marraffini. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol, 31 (2013), pp. 233-239

K. Xie, Y. Yang. RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant, 6 (2013), pp. 1975-1983

J.F. Li, J.E. Norville, J. Aach, M. McCormack, D. Zhang, J. Bush, et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol, 31 (2013), pp. 688-691.

Nekrasov, B. Staskawicz, D. Weigel, J.D.G. Jones, S. Kamoun. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol, 31 (2013), pp. 691-693

L. Cong, F.A. Ran, D. Cox, S. Lin, R. Barretto, N. Habib, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 339 (2013), pp. 819-823

C. Li, E. Brant, H. Budak, B. Zhang. CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvemen. J Zhejiang Univ Sci B, 22 (2021), pp. 253-284

J.A. Meier, F. Zhang, N.E. Sanjana. GUIDES: sgRNA design for loss-of-function screens. Nat Methods, 14 (2017), pp. 831-832

A.V. Anzalone, L.W. Koblan, D.R. Liu. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol, 38 (2020), pp. 824-844.

K. Chen, Y. Wang, R. Zhang, H. Zhang, C. Gao. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol, 70 (2019), pp. 667-697

B. Zhang. CRISPR/Cas gene therapy. J Cell Physiol, 236 (2020), pp. 2459-2481

O. Shalem, N.E. Sanjana, F. Zhang. High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet, 16 (2015), pp. 299-311

A.A. Dominguez, W.A. Lim, L.S. Qi. Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation Nat Rev Mol Cell Biol, 17 (2016), pp. 5-15

P.I. Thakore, J.B. Black, I.B. Hilton, C.A. Gersbach. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat Methods, 13 (2016), pp. 127-137

M. Adli. The CRISPR tool kit for genome editing and beyond. Nat Commun, 9 (2018), p. 1911.

Jiang F., Doudna J.A. CRISPR–Cas9 Structures and Mechanisms. Annu. Rev. Biophys. 2017;46:505–529. doi: 10.1146/annurev-biophys-062215-010822.

Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science. 2012;337:816–821. doi: 10.1126/science.1225829.

Allen F., Crepaldi L., Alsinet C., Strong A.J., Kleshchevnikov V., De Angeli P., Páleníková P., Khodak A., Kiselev V., Kosicki M., et al. Predicting the mutations generated by repair of Cas9-induced double-strand breaks. Nat. Biotechnol. 2019;37:64–72. doi: 10.1038/nbt.4317.

Chakrabarti A.M., Henser-Brownhill T., Monserrat J., Poetsch A.R., Luscombe N.M., Scaffidi P. Target-Specific Precision of CRISPR-Mediated Genome Editing. Mol. Cell. 2019;73:699–713.e6. doi: 10.1016/j.molcel.2018.11.031.

Chen W., McKenna A., Schreiber J., Haeussler M., Yin Y., Agarwal V., Noble W.S., Shendure J. Massively parallel profiling and predictive modeling of the outcomes of CRISPR/Cas9-mediated double-strand break repair. Nucleic Acids Res. 2019;47:7989–8003. doi: 10.1093/nar/gkz487.

Van Overbeek M., Capurso D., Carter M.M., Thompson M.S., Frias E., Russ C., Reece-Hoyes J.S., Nye C., Gradia S., Vidal B., et al. DNA Repair Profiling Reveals Nonrandom Outcomes at Cas9-Mediated Breaks. Mol. Cell. 2016;63:633–646. doi: 10.1016/j.molcel.2016.06.037.

Shen M.W., Arbab M., Hsu J.Y., Worstell D., Culbertson S.J., Krabbe O., Cassa C.A., Liu D.R., Gifford D.K., Sherwood R.I. Predictable and precise template-free CRISPR editing of pathogenic variants. Nature. 2018;563:646–651.

Lin Y., Cradick T.J., Brown M.T., Deshmukh H., Ranjan P., Sarode N., Wile B.M., Vertino P.M., Stewart F.J., Bao G. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res. 2014;42:7473–7485.

Fu Y., Foden J.A., Khayter C., Maeder M.L., Reyon D., Joung J.K., Sander J.D. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 2013;31:822–826.

Hsu P.D., Scott D.A., Weinstein J.A., Ran F.A., Konermann S., Agarwala V., Li Y., Fine E.J., Wu X., Shalem O., et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 2013;31:827–832.

Pattanayak V., Lin S., Guilinger J.P., Ma E., Doudna J.A., Liu D.R. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 2013;31:839–843.

Tsai S.Q., Zheng Z., Nguyen N.T., Liebers M., Topkar V.V., Thapar V., Wyvekens N., Khayter C., Iafrate A.J., Le L.P., et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 2015;33:187–197. doi: 10.1038/nbt.3117.

Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A., et al. Multiplex Genome Engineering Using CRISPR/Cas Systems. Science. 2013;339:819–823. doi: 10.1126/science.1231143.

Mali P., Yang L., Esvelt K.M., Aach J., Guell M., DiCarlo J.E., Norville J.E., Church G.M. RNA-Guided Human Genome Engineering via Cas9. Science. 2013;339:823–826. doi: 10.1126/science.1232033.

Shalem O., Sanjana N.E., Hartenian E., Shi X., Scott D.A., Mikkelsen T.S., Heckl D., Ebert B.L., Root D.E., Doench J.G., et al. Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells. Science. 2014;343:84–87. doi: 10.1126/science.1247005.

Doench J.G., Fusi N., Sullender M., Hegde M., Vaimberg E.W., Donovan K.F., Smith I., Tothova Z., Wilen C., Orchard R., et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 2016;34:184–191. doi: 10.1038/nbt.3437.

Xu H., Xiao T., Chen C.-H., Li W., Meyer C.A., Wu Q., Wu D., Cong L., Zhang F., Liu J.S., et al. Sequence determinants of improved CRISPR sgRNA design. Genome Res. 2015;25:1147–1157. doi: 10.1101/gr.191452.115.

Mendoza B.J., Trinh C.T. Enhanced guide-RNA design and targeting analysis for precise CRISPR genome editing of single and consortia of industrially relevant and non-model organisms. Bioinformatics. 2018;34:16–23.

Moreno-Mateos M.A., Vejnar C.E., Beaudoin J.-D., Fernandez J.P., Mis E.K., Khokha M.K., Giraldez A.J. CRISPRscan: Designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat. Methods. 2015;12:982–988.

Kleinstiver B.P., Pattanayak V., Prew M.S., Tsai S.Q., Nguyen N.T., Zheng Z., Joung J.K. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016;529:490–495.

Vakulskas C.A., Dever D.P., Rettig G.R., Turk R., Jacobi A.M., Collingwood M.A., Bode N.M., McNeill M.S., Yan S., Camarena J., et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat. Med. 2018;24:1216–1224. doi: 10.1038/s41591-018-0137-0.




DOI: https://doi.org/10.37628/ijcbb.v8i1.748

Refbacks

  • There are currently no refbacks.