Open Access Open Access  Restricted Access Subscription or Fee Access

A brief introduction of Bioinformatics: Its Tools and Applications

Khushboo Upadhyay

Abstract


Bioinformatics is an interdisciplinary field that merges molecular biology and genetics with computer science, mathematics, and statistics. To solve data-intensive, large-scale biological concerns, computational techniques are applied. The most typical issues are molecular modelling of biological processes and forming conclusions from obtained data. Sequence analysis is the study of DNA and protein sequences for functional information, and it encompasses subproblems such as homolog identification, multiple sequence alignment, searching for sequence trends, and evolutionary studies. Protein structures are three-dimensional data, and the difficulties related with them are structure prediction (secondary and tertiary), protein structure analysis for functional clues, and structural alignment.


Keywords


Bioinformatics, Sequence analysis, Structure analysis, Analysis Biological networks, DNA, Data analysis, Databases.

Full Text:

PDF

References


Zvelebil, M.J. and Baum, J.O., 2007. Understanding bioinformatics. Garland Science.

Chatr-Aryamontri, A., Ceol, A., Palazzi, L.M., Nardelli, G., Schneider, M.V., Castagnoli, L. and Cesareni, G., 2007. MINT: the Molecular INTeraction database. Nucleic acids research, 35(suppl_1), pp.D572-D574.

Kerrien, S., Aranda, B., Breuza, L., Bridge, A., Broackes-Carter, F., Chen, C., Duesbury, M., Dumousseau, M., Feuermann, M., Hinz, U. and Jandrasits, C., 2012. The IntAct molecular interaction database in 2012. Nucleic acids research, 40(D1), pp.D841-D846.

Xenarios, I., Rice, D.W., Salwinski, L., Baron, M.K., Marcotte, E.M. and Eisenberg, D., 2000. DIP: the database of interacting proteins. Nucleic acids research, 28(1), pp.289-291.

Maglott, D., Ostell, J., Pruitt, K.D. and Tatusova, T., 2010. Entrez Gene: gene-centered information at NCBI. Nucleic acids research, 39(suppl_1), pp.D52-D57.

Flicek, P., Amode, M.R., Barrell, D., Beal, K., Brent, S., Carvalho-Silva, D., Clapham, P., Coates, G., Fairley, S., Fitzgerald, S. and Gil, L., 2012. Ensembl 2012. Nucleic acids research, 40(D1), pp.D84-D90.

Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., Pringle, T.H., Zahler, A.M. and Haussler, D., 2002. The human genome browser at UCSC. Genome research, 12(6), pp.996-1006.

Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. and Tanabe, M., 2012. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic acids research, 40(D1), pp.D109-D114.

Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T. and Harris, M.A., 2000. Gene ontology: tool for the unification of biology. Nature genetics, 25(1), pp.25-29.

Needleman, S.B. and Wunsch, C.D., 1970. A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of molecular biology, 48(3), pp.443-453.

Smith, T.F. and Waterman, M.S., 1981. Identification of common molecular subsequences. Journal of molecular biology, 147(1), pp.195-197.

Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J., 1990. Basic local alignment search tool. Journal of molecular biology, 215(3), pp.403-410.

Lipman, D.J. and Pearson, W.R., 1985. Rapid and sensitive protein similarity searches. Science, 227(4693), pp.1435-1441.

Bafna, V., Lawler, E.L. and Pevzner, P.A., 1997. Approximation algorithms for multiple sequence alignment. Theoretical Computer Science, 182(1-2), pp.233-244.

Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T.J., Higgins, D.G. and Thompson, J.D., 2003. Multiple sequence alignment with the Clustal series of programs. Nucleic acids research, 31(13), pp.3497-3500.


Refbacks

  • There are currently no refbacks.