Open Access Open Access  Restricted Access Subscription or Fee Access

A review of Lytic polysaccharide monooxygenases: Its regioselectivity and substrate specificity

Teena Chauhan

Abstract


The most abundant sources of energy and raw materials for sustainability are regenerative biomass, including cellulose and chitin. Furthermore, due to the low efficacy of typical hydrolytic enzymes in dissolving this refractory substrates, these biomass resources cannot be utilised. Lytic Polysaccharide Monooxygenases (LPMOs) were discovered in 2010 and completely changed the field. LPMOs are grouped into the following categories in the CAZy database, including AA9–11 and AA13–16, based on their species origins, substrate specificity and oxidative regioselectivity. The molecular processes of LPMO function must be understood in order for LPMOs to be used effectively in biomass conversion of biomass. Since, identification of LPMOs, substantial progress has been achieved in understanding their high selectivity of substrate and regioselectivity, and also their structural foundation, which will be discussed further below.


Keywords


: Substrate Specificity, Rigioselectivity, LMPO, Enzymes, Mechanism

Full Text:

PDF

References


Aachmann FL, Sorlie M, Skjak-Braek G, Eijsink VG, Vaaje-Kolstad G (2012) NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions. Proc Natl Acad Sci USA 109:18779–18784.

Agger JW, Isaksen T, Varnai A, Vidal-Melgosa S, Willats WG, Ludwig R, Horn SJ, Eijsink VG, Westereng B (2014) Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci USA 111:6287–6292

Bacik JP, Mekasha S, Forsberg Z, Kovalevsky AY, Vaaje-Kolstad G, Eijsink VGH, Nix JC, Coates L, Cuneo MJ, Unkefer CJ, Chen JC (2017) Neutron and atomic resolution X-ray structures of a lytic polysaccharide monooxygenase reveal copper-mediated dioxygen binding and evidence for N-terminal deprotonation. Biochemistry 56:2529–2532

Beeson WT, Vu VV, Span EA, Phillips CM, Marletta MA (2015) Cellulose degradation by polysaccharide monooxygenases. Annu Rev Biochem 84:923–946

Bennati-Granier C, Garajova S, Champion C, Grisel S, Haon M, Zhou S, Fanuel M, Ropartz D, Rogniaux H, Gimbert I, Record E, Berrin JG (2015) Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina. Biotechnol Biofuels 8:90

Bey M, Zhou S, Poidevin L, Henrissat B, Coutinho PM, Berrin JG, Sigoillot JC (2013) Cello-oligosaccharide oxidation reveals differences between two lytic polysaccharide monooxygenases (family GH61) from Podospora anserina. Appl Environ Microbiol 79:488–496

Bissaro B, Rohr AK, Muller G, Chylenski P, Skaugen M, Forsberg Z, Horn SJ, Vaaje-Kolstad G, Eijsink VGH (2017) Oxidative cleavage of polysaccharides by monocopper enzymes depends on H2O2. Nat Chem Biol 13:1123–1128

Bissaro B, Isaksen I, Vaaje-Kolstad G, Eijsink VGH, Rohr AK (2018) How a lytic polysaccharide monooxygenase binds crystalline chitin. Biochemistry 57:1893–1906

Book AJ, Yennamalli RM, Takasuka TE, Currie CR, Phillips GN Jr, Fox BG (2014) Evolution of substrate specificity in bacterial AA10 lytic polysaccharide monooxygenases. Biotechnol Biofuels 7:109

Borisova AS, Isaksen T, Dimarogona M, Kognole AA, Mathiesen G, Varnai A, Rohr AK, Payne CM, Sorlie M, Sandgren M, Eijsink VG (2015) Structural and functional characterization of a lytic polysaccharide monooxygenase with broad substrate specificity. J Biol Chem 290:22955–22969

Cannella D, Mollers KB, Frigaard NU, Jensen PE, Bjerrum MJ, Johansen KS, Felby C (2016) Light-driven oxidation of polysaccharides by photosynthetic pigments and a metalloenzyme. Nat Commun 7:11134

Chabbert B, Habrant A, Herbaut M, Foulon L, Aguie-Beghin V, Garajova S, Grisel S, Bennati-Granier C, Gimbert-Herpoel I, Jamme F, Refregiers M, Sandt C, Berrin JG, Paes G (2017) Action of lytic polysaccharide monooxygenase on plant tissue is governed by cellular type. Sci Rep 7:17792

Chalak A, Villares A, Moreau C, Haon M, Grisel S, d’Orlando A, Herpoel-Gimbert I, Labourel A, Cathala B, Berrin JG (2019) Influence of the carbohydrate-binding module on the activity of a fungal AA9 lytic polysaccharide monooxygenase on cellulosic substrates. Biotechnol Biofuels 12:206

Chaplin AK, Wilson MT, Hough MA, Svistunenko DA, Hemsworth GR, Walton PH, Vijgenboom E, Worrall JA (2016) Heterogeneity in the histidine-brace copper coordination sphere in auxiliary activity family 10 (AA10) lytic polysaccharide monooxygenases. J Biol Chem 291:12838–12850

Chen C, Chen J, Geng Z, Wang M, Liu N, Li D (2018) Regioselectivity of oxidation by a polysaccharide monooxygenase from Chaetomium thermophilum. Biotechnol Biofuels 11:155

Chiu E, Hijnen M, Bunker RD, Boudes M, Rajendran C, Aizel K, Olieric V, Schulze-Briese C, Mitsuhashi W, Young V, Ward VK, Bergoin M, Metcalf P, Coulibaly F (2015) Structural basis for the enhancement of virulence by viral spindles and their in vivo crystallization. Proc Natl Acad Sci USA 112:3973–3978

Correa TLR, Junior AT, Wolf LD, Buckeridge MS, Dos Santos LV, Murakami MT (2019) An actinobacteria lytic polysaccharide monooxygenase acts on both cellulose and xylan to boost biomass saccharification. Biotechnol Biofuels 12:117

Courtade G, Balzer S, Forsberg Z, Vaaje-Kolstad G, Eijsink VG, Aachmann FL (2015) (1)H, (13)C, (15)N resonance assignment of the chitin-active lytic polysaccharide monooxygenase BlLPMO10A from Bacillus licheniformis. Biomol NMR Assign 9:207–210

Courtade G, Wimmer R, Rohr AK, Preims M, Felice AK, Dimarogona M, Vaaje-Kolstad G, Sorlie M, Sandgren M, Ludwig R, Eijsink VG, Aachmann FL (2016) Interactions of a fungal lytic polysaccharide monooxygenase with beta-glucan substrates and cellobiose dehydrogenase. Proc Natl Acad Sci USA 113:5922–5927.




DOI: https://doi.org/10.37628/ijbb.v8i1.777

Refbacks

  • There are currently no refbacks.