Open Access Open Access  Restricted Access Subscription or Fee Access

Tau Protein: Its Gene Organisation, Aggregation and Progression of the Tau Pathology in Neurodegenerative Disorders

Shobhit Saxena

Abstract


The tau proteins or the tau like proteins such as β-amyloid, synuclein, prions are known to form aggregates and these aggregates results in the formation of the neurofibrillary tangles (NFT’s), these NFT’s are not the toxic species but are the intermediate species which facilitate the seeding and propagation of the tau pathology related neurodegenerative disorders like Alzheimer’s disease, Parkinson’s disorder, progressive supranuclear palsy, and etc. Here in this review, I have discussed the different processes and also the biochemistry behind the misfolded Tau followed by aggregation of Tau protein which eventually leads to tau related pathogenesis. The entry-exit mechanism of toxic Tau oligomer both within the cell and across the cell membrane namely, pore-formation, endocytosis, exocytosis, and also the secretion of Tau protein oligomers without being enclosed in any membranes are very well discussed in the article. The understanding of the chemistry behind the tau protein aggregation may focus the interest of researcher to certain important targets to inhibit the abnormal phosphorylation, proteolysis, aggregation and to stabilize the microtubule. Thus, finding, solution to curb the disorder at a very early stage before it progresses to the other unaffected regions of brains.

Full Text:

PDF

References


Kosik KS, Shimura H. Phosphorylated tau and the neurodegenerative foldopathies. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2005 Jan 3;1739(2):298-310.

Zilka N, Kontsekova E, Novak M. Chaperone-like antibodies targeting misfolded tau protein: new vistas in the immunotherapy of neurodegenerative foldopathies. Journal of Alzheimer's Disease(JAD). 2008 Jan 1;15(2):169-179.

Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimer's & Dementia(AD). 2013 Jan 31;9(1):63-75.

Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M. Alzheimer's disease: clinical trials and drug development. The Lancet Neurology(TLN). 2010 Jul 31;9(7):702-716.

Cleveland DW, Hwo SY, Kirschner MW. Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. Journal of molecular biology(JMB). 1977 Oct 25;116(2):207-225.

Cleveland DW, Hwo SY, Kirschner MW. Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. Journal of molecular biology(JMB). 1977 Oct 25;116(2):227-247.

Pierre M, Nunez J. Multisite phosphorylation of τ proteins from rat brain. Biochemical and biophysical research communications(BPRC). 1983 Aug 30;115(1):212-219.

Jameson L, Frey T, Zeeberg B, Dalldorf F, Caplow M. Inhibition of microtubule assembly by phosphorylation of microtubule-associated proteins. Biochemistry(B). 1980 May 1;19(11):2472-2479.

Lindwall G, Cole RD. Phosphorylation affects the ability of tau protein to promote microtubule assembly. Journal of Biological Chemistry. 1984 Apr 25;259(8):5301-5305.

Binder LI, Frankfurter A, Rebhun LI. The distribution of tau in the mammalian central nervous system. The Journal of cell biology(TJCB). 1985 Oct 1;101(4):1371-1378.

Papasozomenos SC, Binder LI. Phosphorylation determines two distinct species of tau in the central nervous system. Cytoskeleton. 1987 Jan 1;8(3):210-226.

Migheli A, Butler M, Brown K, Shelanski ML. Light and electron microscope localization of the microtubule-associated tau protein in rat brain. Journal of Neuroscience(JON). 1988 Jun 1;8(6):1846-1851.

Couchie D, Charrière‐Bertrand C, Nunez J. Expression of the mRNA for τ proteins during brain development and in cultured neurons and astroglial cells. Journal of neurochemistry(JON). 1988 Jun 1;50(6):1894-1899.

Resch JF, Lehr GS, Wischik CM. Design and synthesis of a potential affinity/cleaving reagent for beta-pleated sheet protein structures. Bioorganic & Medicinal Chemistry Letters(BMCL). 1991 Dec 31;1(10):519-522.

Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA. Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. The EMBO journal(TEJ). 1989 Feb;8(2):393.

Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron. 1989 Oct 31;3(4):519-526.

Šimić G, Babić Leko M, Wray S, Harrington C, Delalle I, Jovanov-Milošević N, Bažadona D, Buée L, De Silva R, Di Giovanni G, Wischik C. Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules. 2016 Jan 6;6(1):6.

Ballatore C, Lee VM, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nature reviews. Neuroscience. 2007 Sep 1;8(9):663-672

Gendron TF, Petrucelli L. The role of tau in neurodegeneration. Molecular neurodegeneration. 2009 Mar 11;4(1):13.

Gómez‐Isla T, Hollister R, West H, Mui S, Growdon JH, Petersen RC, Parisi JE, Hyman BT. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer's disease. Annals of neurology(AON). 1997 Jan 1;41(1):17-24.

Morsch R, Simon W, Coleman PD. Neurons may live for decades with neurofibrillary tangles. Journal of Neuropathology & Experimental Neurology(JNEN). 1999 Feb 1;58(2):188-197.

Kril JJ, Patel S, Harding AJ, Halliday GM. Neuron loss from the hippocampus of Alzheimer's disease exceeds extracellular neurofibrillary tangle formation. Acta neuropathologica. 2002 Apr 1;103(4):370-376.

Haroutunian V, Davies P, Vianna C, Buxbaum JD, Purohit DP. Tau protein abnormalities associated with the progression of alzheimer disease type dementia. Neurobiology of aging(NOA). 2007 Jan 31;28(1):1-7.

Spires TL, Orne JD, SantaCruz K, Pitstick R, Carlson GA, Ashe KH, Hyman BT. Region-specific dissociation of neuronal loss and neurofibrillary pathology in a mouse model of tauopathy. The American journal of pathology(TAJP). 2006 May 31;168(5):1598-607.

Berger Z, Roder H, Hanna A, Carlson A, Rangachari V, Yue M, Wszolek Z, Ashe K, Knight J, Dickson D, Andorfer C. Accumulation of pathological tau species and memory loss in a conditional model of tauopathy. Journal of Neuroscience(JAN). 2007 Apr 4;27(14):3650-3662.

Maeda S, Sahara N, Saito Y, Murayama M, Yoshiike Y, Kim H, Miyasaka T, Murayama S, Ikai A, Takashima A. Granular tau oligomers as intermediates of tau filaments. Biochemistry. 2007 Mar 27;46(12):3856-3561.

Kopeikina KJ, Carlson GA, Pitstick R, Ludvigson AE, Peters A, Luebke JI, Koffie RM, Frosch MP, Hyman BT, Spires-Jones TL. Tau accumulation causes mitochondrial distribution deficits in neurons in a mouse model of tauopathy and in human Alzheimer's disease brain. The American journal of pathology(TAJP). 2011 Oct 31;179(4):2071-2082.

Cowan CM, Quraishe S, Mudher A. What is the pathological significance of tau oligomers?.

BiochemSocTrans (2012) 40:693– 697.

Sahara N, DeTure M, Ren Y, Ebrahim AS, Kang D, Knight J, Volbracht C, Pedersen JT, Dickson DW, Yen SH, Lewis J. Characteristics of TBS-extractable hyperphosphorylated tau species: aggregation intermediates in rTg4510 mouse brain. Journal of Alzheimer's Disease(JAD). 2013 Jan 1;33(1):249-263.

Andorfer C, Kress Y, Espinoza M, De Silva R, Tucker KL, Barde YA, Duff K, Davies P. Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms. Journal of neurochemistry(JON). 2003 Aug 1;86(3):582-90.

Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, Maeda J, Suhara T, Trojanowski JQ, Lee VM. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron. 2007 Feb 1;53(3):337-351.

Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, Guimaraes A, Deture M, Ramsden M, McGowan E, Forster C. Tau suppression in a neurodegenerative mouse model improves memory function. Science. 2005 Jul 15;309(5733):476-481.

de Calignon A, Fox LM, Pitstick R, Carlson GA, Bacskai BJ, Spires-Jones TL, Hyman BT. Caspase activation precedes and leads to tangles. Nature. 2010 Apr 22;464(7292):1201-1204

Sydow A, Van der Jeugd A, Zheng F, Ahmed T, Balschun D, Petrova O, Drexler D, Zhou L, Rune G, Mandelkow E, D'Hooge R. Tau-induced defects in synaptic plasticity, learning, and memory are reversible in transgenic mice after switching off the toxic Tau mutant. Journal of Neuroscience(JON). 2011 Feb 16;31(7):2511-2525.

Wittmann CW, Wszolek MF, Shulman JM, Salvaterra PM, Lewis J, Hutton M, Feany MB. Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science. 2001 Jul 27;293(5530):711-714.

Cowan CM, Bossing T, Page A, Shepherd D, Mudher A. Soluble hyper-phosphorylated tau causes microtubule breakdown and functionally compromises normal tau in vivo. Acta neuropathologica. 2010 Nov 1;120(5):593-604.

Ali YO, Ruan K, Zhai RG. NMNAT suppresses tau-induced neurodegeneration by promoting clearance of hyperphosphorylated tau oligomers in a Drosophila model of tauopathy. Human molecular genetics(HMG). 2011 Sep 30;21(2):237-250.

Maeda S, Sahara N, Saito Y, Murayama S, Ikai A, Takashima A. Increased levels of granular tau oligomers: an early sign of brain aging and Alzheimer's disease. Neuroscience research. 2006 Mar 31;54(3):197-201.

Patterson KR, Remmers C, Fu Y, Brooker S, Kanaan NM, Vana L, Ward S, Reyes JF, Philibert K, Glucksman MJ, Binder LI. Characterization of prefibrillar Tau oligomers in vitro and in Alzheimer disease. Journal of Biological Chemistry(JBC). 2011 Jul 1;286(26):23063-23076.

Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Clos AL, Jackson GR, Kayed R. Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice. Molecular neurodegeneration(MN) 2011 Jun 6;6(1):1326-1339.

Gerson JE, Kayed R. Formation and propagation of tau oligomeric seeds. Frontiers in neurology(FON). 2013;4.

Serio TR, Cashikar AG, Kowal AS, Sawicki GJ, Moslehi JJ, Serpell L, Arnsdorf MF, Lindquist SL. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science. 2000 Aug 25;289(5483):1317-1321.

Lee J, Culyba EK, Powers ET, Kelly JW. Amyloid-β forms fibrils by nucleated conformational conversion of oligomers. Nature chemical biology. 2011 Sep 1;7(9):602-609.

Margittai M, Langen R. Template-assisted filament growth by parallel stacking of tau. Proceedings of the National Academy of Sciences of the United States of America. 2004 Jul 13;101(28):10278-10283.

Chang E, Kim S, Yin H, Nagaraja HN, Kuret J. Pathogenic missense MAPT mutations differentially modulate tau aggregation propensity at nucleation and extension steps. Journal of neurochemistry.(JON) 2008 Nov 1;107(4):1113-23.

Congdon EE, Kim S, Bonchak J, Songrug T, Matzavinos A, Kuret J. Nucleation-dependent tau filament formation the importance of dimerization and an estimation of elementary rate constants. Journal of Biological Chemistry(JBC). 2008 May 16;283(20):13806-113816.

King ME, Ahuja V, Binder LI, Kuret J. Ligand-dependent tau filament formation: implications for Alzheimer's disease progression. Biochemistry. 1999 Nov 9;38(45):14851-14859.

Von Bergen M, Barghorn S, Biernat J, Mandelkow EM, Mandelkow E. Tau aggregation is driven by a transition from random coil to beta sheet structure. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2005 Jan 3;1739(2):158-166.

Wilson DM, Binder LI. Free fatty acids stimulate the polymerization of tau and amyloid beta peptides. In vitro evidence for a common effector of pathogenesis in Alzheimer's disease. The American journal of pathology(TAJP). 1997 Jun;150(6):2181-2195.

King ME, Gamblin TC, Kuret J, Binder LI. Differential assembly of human tau isoforms in the presence of arachidonic acid. Journal of neurochemistry(JON). 2000 Apr 1;74(4):1749-1757.

Barghorn S, Mandelkow E. Toward a unified scheme for the aggregation of tau into Alzheimer paired helical filaments. Biochemistry. 2002 Dec 17;41(50):14885-14896.

Chirita CN, Necula M, Kuret J. Anionic micelles and vesicles induce tau fibrillization in vitro. Journal of Biological Chemistry(JBC). 2003 Jul 11;278(28):25644-25650.

Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proceedings of the National Academy of Sciences. 1986 Jul 1;83(13):4913-4917.

Lee VM, Balin BJ, Otvos Jr L, Trojanowski JQ. A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science. 1991 Feb 8;251(4994):675-679.

Lee VM, Balin BJ, Otvos Jr L, Trojanowski JQ. A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science. 1991 Feb 8;251(4994):675-679.

Alonso AD, Zaidi T, Novak M, Barra HS, Grundke-Iqbal I, Iqbal K. Interaction of tau isoforms with Alzheimer's disease abnormally hyperphosphorylated tau and in VitroPhosphorylation into the disease-like protein. Journal of Biological Chemistry(JBC). 2001 Oct 12;276(41):37967-37973.

Alonso AD, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K. Hyperphosphorylation induces self-assembly of τ into tangles of paired helical filaments/straight filaments. Proceedings of the National Academy of Sciences. 2001 Jun 5;98(12):6923-6928.

Biernat J, Gustke N, Drewes G, Mandelkow E. Phosphorylation of Ser 262 strongly reduces binding of tau to microtubules: distinction between PHF-like immunoreactivity and microtubule binding. Neuron. 1993 Jul 31;11(1):153-163.

Bramblett GT, Goedert M, Jakes R, Merrick SE, Trojanowski JQ, Lee VM. Abnormal tau phosphorylation at Ser 396 in Alzheimer's disease recapitulates development and contributes to reduced microtubule binding. Neuron. 1993 Jun 30;10(6):1089-1099.

Sengupta A, Kabat J, Novak M, Wu Q, Grundke-Iqbal I, Iqbal K. Phosphorylation of tau at both Thr 231 and Ser 262 is required for maximal inhibition of its binding to microtubules. Archives of biochemistry and biophysics(ABB). 1998 Sep 15;357(2):299-309.

Hasegawa M, Smith MJ, Goedert M. Tau proteins with FTDP‐17 mutations have a reduced ability to promote microtubule assembly. FEBS letters. 1998 Oct 23;437(3):207-210.

Barghorn S, Zheng-Fischhöfer Q, Ackmann M, Biernat J, Von Bergen M, Mandelkow EM, Mandelkow E. Structure, microtubule interactions, and paired helical filament aggregation by tau mutants of frontotemporal dementias. Biochemistry. 2000 Sep 26;39(38):11714-11721.

DeTure M, Ko LW, Yen S, Nacharaju P, Easson C, Lewis J, Van Slegtenhorst M, Hutton M, Yen SH. Missense tau mutations identified in FTDP-17 have a small effect on tau–microtubule interactions. Brain research(BR). 2000 Jan 17;853(1):5-14.

Poorkaj P, Muma NA, Zhukareva V, Cochran EJ, Shannon KM, Hurtig H, Koller WC, Bird TD, Trojanowski JQ, Lee VM, Schellenberg GD. An R5L τ mutation in a subject with a progressive supranuclear palsy phenotype. Annals of neurology(AN) 2002 Oct 1;52(4):511-516

Harada M, Isersky C, Cuatrecasas P, Page D, Bladen HA, Eanes ED, Keiser HR, Glenner GG. Human amyloid protein: chemical variability and homogeneity. Journal of Histochemistry & Cytochemistry(JHC).1971 Jan;19(1):1-5.

von Bergen M, Barghorn S, Li L, Marx A, Biernat J, Mandelkow EM, Mandelkow E. Mutations of tau protein in frontotemporal dementia promote aggregation of paired helical filaments by enhancing local β-structure. Journal of Biological Chemistry(JBC). 2001 Dec 21;276(51):48165-48174.

Friedhoff P, Schneider A, Mandelkow EM, Mandelkow E. Rapid assembly of Alzheimer-like paired helical filaments from microtubule-associated protein tau monitored by fluorescence in solution. Biochemistry. 1998 Jul 14;37(28):10223-102230.

León LD, Karla I, García-Gutiérrez P, Serratos IN, Palomera-Cárdenas M, Figueroa-Corona MD, Campos-Peña V, Meraz-Ríos MA. Molecular mechanism of tau aggregation induced by anionic and cationic dyes. Journal of Alzheimer's Disease(JAD). 2013 Jan 1;35(2):319-334.

Kim YS, Randolph TW, Manning MC, Stevens FJ, Carpenter JF. Congo red populates partially unfolded states of an amyloidogenic protein to enhance aggregation and amyloid fibril formation. Journal of Biological Chemistry(JBC). 2003 Mar 21;278(12):10842-10850.

Congdon EE, Necula M, Blackstone RD, Kuret J. Potency of a tau fibrillization inhibitor is influenced by its aggregation state. Archives of biochemistry and biophysics(ABB) 2007 Sep 1;465(1):127-135.

Silveira JR, Raymond GJ, Hughson AG, Race RE, Sim VL, Caughey B, Hayes SF. The most infectious prion protein particles. Nature. 2005 Sep 8;437(7056):257.

Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ, Kiritoshi T, Neugebauer V, Jackson GR, Kayed R. Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Scientific reports(SR) 2012;2.

Ruschak AM, Miranker AD. The role of prefibrillar structures in the assembly of a peptide amyloid. Journal of molecular biology(JMB) 2009 Oct 16;393(1):214-226.

Sengupta U, Portelius E, Hansson O, Farmer K, Castillo‐Carranza D, Woltjer R, Zetterberg H, Galasko D, Blennow K, Kayed R. Tau oligomers in cerebrospinal fluid in Alzheimer's disease. Annals of clinical and translational neurology(ACTN) 2017 Apr 1;4(4):226-235.

MANDELKOW EM, Biernat J, Drewes G, Steiner B, Lichtenberg‐Kraag B, Wille H, Gustke NA, Mandelkow E. Microtubule‐associated protein tau, paired helical filaments, and phosphorylation. Annals of the New York Academy of Sciences(ANYAS) 1993 Sep 1;695(1):209-216.

Hinds K, Koh JJ, Joss L, Liu F, Baudyš M, Kim SW. Synthesis and characterization of poly (ethylene glycol)− insulin conjugates. Bioconjugate chemistry(BC) 2000 Mar 20;11(2):195-201.

Bernstein SL, Dupuis NF, Lazo ND, Wyttenbach T, Condron MM, Bitan G, Teplow DB, Shea JE, Ruotolo BT, Robinson CV, Bowers MT. Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer's disease. Nature chemistry. 2009 Jul 1;1(4):326-331.

Frare E, Mossuto MF, de Laureto PP, Tolin S, Menzer L, Dumoulin M, Dobson CM, Fontana A. Characterization of oligomeric species on the aggregation pathway of human lysozyme. Journal of molecular biology(JMB). 2009 Mar 20;387(1):17-27.

Chirita CN, Congdon EE, Yin H, Kuret J. Triggers of full-length tau aggregation: a role for partially folded intermediates. Biochemistry. 2005 Apr 19;44(15):5862-5872.

Littauer UZ, Giveon D, Thierauf M, Ginzburg I, Ponstingl H. Common and distinct tubulin binding sites for microtubule-associated proteins. Proceedings of the National Academy of Sciences(PNAS). 1986 Oct 1;83(19):7162-7166.

Kampers T, Friedhoff P, Biernat J, Mandelkow EM, Mandelkow E. RNA stimulates aggregation of microtubule‐associated protein tau into Alzheimer‐like paired helical filaments. FEBS letters. 1996 Dec 16;399(3):344-349.

Bence NF, Sampat RM, Kopito RR. Impairment of the ubiquitin-proteasome system by protein aggregation. Science. 2001 May 25;292(5521):1552-1555.

Jakes R, Spillantini MG, Goedert M. Identification of two distinct synucleins from human brain. FEBS letters. 1994 May 23;345(1):27-32.

Clayton DF, George JM. Synucleins in synaptic plasticity and neurodegenerative disorders. Journal of neuroscience research(JNR) 1999 Oct 1;58(1):120-129.

Serpell LC, Berriman J, Jakes R, Goedert M, Crowther RA. Fiber diffraction of synthetic α-synuclein filaments shows amyloid-like cross-β conformation. Proceedings of the National Academy of Sciences(PNAS). 2000 Apr 25;97(9):4897-4902.

Fernagut PO, Chesselet MF. Alpha-synuclein and transgenic mouse models. Neurobiology of disease(ND). 2004 Nov 30;17(2):123-130.

Giasson BI, Lee VM, Trojanowski JQ. Interactions of amyloidogenic proteins. Neuromolecular medicine(NM). 2003 Oct 1;4(1-2):49-58.

Goedert M, Spillantini MG, Serpell LC, Berriman J, Smith MJ, Jakes R, Crowther RA. From genetics to pathology: tau and a–synuclein assemblies in neurodegenerative diseases. Philosophical Transactions of the Royal Society of London B: Biological Sciences(PTRSLBS)2001 Feb 28;356(1406):213-227.

Lee VM, Goedert M, Trojanowski JQ. Neurodegenerative tauopathies. Annual review of neuroscience(ARN) 2001 Mar;24(1):1121-1159.

Shimura H, Schlossmacher MG, Hattori N, Frosch MP, Trockenbacher A, Schneider R, Mizuno Y, Kosik KS, Selkoe DJ. Ubiquitination of a new form of α-synuclein by parkin from human brain: implications for Parkinson's disease. Science. 2001 Jul 13;293(5528):263-269.

Martins-Branco D, Esteves AR, Santos D, Arduino DM, Swerdlow RH, Oliveira CR, Januario C, Cardoso SM. Ubiquitin proteasome system in Parkinson's disease: A keeper or a witness?. Experimental neurology. 2012 Dec 31;238(2):89-99.

Feany MB, Bender WW. A Drosophila model of Parkinson's disease. Nature. 2000 Mar 23;404(6776):394.

Rubin GM, Yandell MD, Wortman JR, Gabor GL, Nelson CR, Hariharan IK, Fortini ME, Li PW, Apweiler R, Fleischmann W, Cherry JM. Comparative genomics of the eukaryotes. Science. 2000 Mar 24;287(5461):2204-15.

Jakes R, Spillantini MG, Goedert M. Identification of two distinct synucleins from human brain. FEBS letters. 1994 May 23;345(1):27-32.

Olanow CW, McNaught KS. Ubiquitin–proteasome system and Parkinson's disease. Movement Disorders. 2006 Nov 1;21(11):1806-1823.

de Vrij FM, Fischer DF, van Leeuwen FW, Hol EM. Protein quality control in Alzheimer's disease by the ubiquitin proteasome system. Progress in neurobiology(PN) 2004 Dec 31;74(5):249-270.

Delobel P, Leroy O, Hamdane M, Sambo AV, Delacourte A, Buee L. Proteasome inhibition and Tau proteolysis: an unexpected regulation. FEBS letters. 2005 Jan 3;579(1):1-5.

Deger JM, Gerson JE, Kayed R. The interrelationship of proteasome impairment and oligomeric intermediates in neurodegeneration. Aging Cell. 2015 Oct 1;14(5):715-724.

Walker LC, Callahan MJ, Bian F, Durham RA, Roher AE, Lipinski WJ. Exogenous induction of cerebral β-amyloidosis in βAPP-transgenic mice. Peptides. 2002 Jul 31;23(7):1241-1247.

Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E, Neuenschwander A, Abramowski D, Frey P, Jaton AL, Vigouret JM. Exogenous induction of cerebral ß-amyloidogenesis is governed by agent and host. Science. 2006 Sep 22;313(5794):1781-1784.

Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, Fraser G, Stalder AK, Beibel M, Staufenbiel M, Jucker M. Transmission and spreading of tauopathy in transgenic mouse brain. Nature cell biology(NCB). 2009 Jul;11(7):909.

de Calignon A, Polydoro M, Suárez-Calvet M, William C, Adamowicz DH, Kopeikina KJ, Pitstick R, Sahara N, Ashe KH, Carlson GA, Spires-Jones TL. Propagation of tau pathology in a model of early Alzheimer's disease. Neuron. 2012 Feb 23;73(4):685-697.

Liu L, Drouet V, Wu JW, Witter MP, Small SA, Clelland C, Duff K. Trans-synaptic spread of tau pathology in vivo. PloS one. 2012 Feb 1;7(2):e31302.

Wu JW, Herman M, Liu L, Simoes S, Acker CM, Figueroa H, Steinberg JI, Margittai M, Kayed R, Zurzolo C, Di Paolo G. Small misfolded Tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. Journal of Biological Chemistry(JBC). 2013 Jan 18;288(3):1856-1870.

Frost B, Jacks RL, Diamond MI. Propagation of tau misfolding from the outside to the inside of a cell. Journal of Biological Chemistry(JBC). 2009 May 8;284(19):12845-12852.

Guo JL, Lee VM. Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like tangles. Journal of Biological Chemistry(JBC). 2011 Apr 29;286(17):15317-15331.

Frost B, Ollesch J, Wille H, Diamond MI. Conformational diversity of wild-type Tau fibrils specified by templated conformation change. Journal of Biological Chemistry(JBC). 2009 Feb 6;284(6):3546-3651.

Dotti CG, Banker GA, Binder LI. The expression and distribution of the microtubule-associated proteins tau and microtubule-associated protein 2 in hippocampal neurons in the rat in situ and in cell culture. Neuroscience. 1987 Oct 31;23(1):121-130.

Lee G, Newman ST, Gard DL, Band H, Panchamoorthy G. Tau interacts with src-family non-receptor tyrosine kinases. Journal of cell science(JCS). 1998 Nov 1;111(21):3167-3177.

Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J, Wölfing H, Chieng BC, Christie MJ, Napier IA, Eckert A. Dendritic function of tau mediates amyloid-β toxicity in Alzheimer's disease mouse models. Cell. 2010 Aug 6;142(3):387-397.

Avila J, Lucas JJ, Perez MA, Hernandez F. Role of tau protein in both physiological and pathological conditions. Physiological reviews. 2004 Apr 1;84(2):361-384.

Lee S, Kim W, Li Z, Hall GF. Accumulation of vesicle-associated human tau in distal dendrites drives degeneration and tau secretion in an in situ cellular tauopathy model. International Journal of Alzheimer’s Disease(IJAD). 2012 Jan 17:1-16.

Tai HC, Serrano-Pozo A, Hashimoto T, Frosch MP, Spires-Jones TL, Hyman BT. The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system. The American journal of pathology. 2012 Oct 31;181(4):1426-1435.

Díaz-Hernández M, Gómez-Ramos A, Rubio A, Gómez-Villafuertes R, Naranjo JR, Miras-Portugal MT, Avila J. Tissue-nonspecific alkaline phosphatase promotes the neurotoxicity effect of extracellular tau. Journal of Biological Chemistry(JBC). 2010 Oct 15;285(42):32539-32548.

Pooler AM, Phillips EC, Lau DH, Noble W, Hanger DP. Physiological release of endogenous tau is stimulated by neuronal activity. EMBO reports. 2013 Apr 1;14(4):389-394.

Plouffe V, Mohamed NV, Rivest-McGraw J, Bertrand J, Lauzon M, Leclerc N. Hyperphosphorylation and cleavage at D421 enhance tau secretion. PloS one. 2012 May 15;7(5):e36873.

Li Y, Liu L, Barger SW, Griffin WS. Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. Journal of Neuroscience(JON). 2003 Mar 1;23(5):1605-1611.

Bhaskar K, Konerth M, Kokiko-Cochran ON, Cardona A, Ransohoff RM, Lamb BT. Regulation of tau pathology by the microglial fractalkine receptor. Neuron. 2010 Oct 6;68(1):19-31.

Ghosh S, Wu MD, Shaftel SS, Kyrkanides S, LaFerla FM, Olschowka JA, O'Banion MK. Sustained interleukin-1β overexpression exacerbates tau pathology despite reduced amyloid burden in an Alzheimer's mouse model. Journal of Neuroscience(JON). 2013 Mar 13;33(11):5053-5064.

Nash KR, Lee DC, Hunt JB, Morganti JM, Selenica ML, Moran P, Reid P, Brownlow M, Yang CG, Savalia M, Gemma C. Fractalkine overexpression suppresses tau pathology in a mouse model of tauopathy. Neurobiology of aging. 2013 Jun 30;34(6):1540-1548.

Sultan A, Nesslany F, Violet M, Bégard S, Loyens A, Talahari S, Mansuroglu Z, Marzin D, Sergeant N, Humez S, Colin M. Nuclear tau, a key player in neuronal DNA protection. Journal of Biological Chemistry. 2011 Feb 11;286(6):4566-4575.

Anderson AJ, Su JH, Cotman CW. DNA damage and apoptosis in Alzheimer's disease: colocalization with c-Jun immunoreactivity, relationship to brain area, and effect of postmortem delay. Journal of Neuroscience(JON). 1996 Mar 1;16(5):1710-1719.

Pooler AM, Usardi A, Evans CJ, Philpott KL, Noble W, Hanger DP. Dynamic association of tau with neuronal membranes is regulated by phosphorylation. Neurobiology of aging(NOA). 2012 Feb 29;33(2):431-427.

Kanu N, Imokawa Y, Drechsel DN, Williamson RA, Birkett CR, Bostock CJ, Brockes JP. Transfer of scrapie prion infectivity by cell contact in culture. Current biology. 2002 Apr 2;12(7):523-530.

Yang W, Dunlap JR, Andrews RB, Wetzel R. Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Human molecular genetics(HMG). 2002 Nov 1;11(23):2905-2917.

Magalhaes AC, Baron GS, Lee KS, Steele-Mortimer O, Dorward D, Prado MA, Caughey B. Uptake and neuritic transport of scrapie prion protein coincident with infection of neuronal cells. Journal of Neuroscience(JON). 2005 May 25;25(21):5207-5216.

Ren PH, Lauckner JE, Kachirskaia I, Heuser JE, Melki R, Kopito RR. Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nature cell biology(NCB). 2009 Feb;11(2):219.

Lasagna-Reeves CA, Glabe CG, Kayed R. Amyloid-β annular protofibrils evade fibrillar fate in Alzheimer disease brain. Journal of Biological Chemistry(JBC). 2011 Jun 24;286(25):22122-22130.

Kayed R, Sokolov Y, Edmonds B, McIntire TM, Milton SC, Hall JE, Glabe CG. Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. Journal of Biological Chemistry(JBC). 2004 Nov 5;279(45):46363-46366.

Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. Journal of Biological Chemistry(JBC). 2005 Apr 29;280(17):17294-17300.

Svan Rooijen BD, Claessens MM, Subramaniam V. Lipid bilayer disruption by oligomeric α-synuclein depends on bilayer charge and accessibility of the hydrophobic core. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2009 Jun 30;1788(6):1271-1278.

Flach K, Hilbrich I, Schiffmann A, Gärtner U, Krüger M, Leonhardt M, Waschipky H, Wick L, Arendt T, Holzer M. Tau oligomers impair artificial membrane integrity and cellular viability. Journal of Biological Chemistry(JBC). 2012 Dec 21;287(52):43223-43233.

Jones EM, Dubey M, Camp PJ, Vernon BC, Biernat J, Mandelkow E, Majewski J, Chi EY. Interaction of tau protein with model lipid membranes induces tau structural compaction and membrane disruption. Biochemistry. 2012 Mar 14;51(12):2539-2550.

Künze G, Barré P, Scheidt HA, Thomas L, Eliezer D, Huster D. Binding of the three-repeat domain of tau to phospholipid membranes induces an aggregated-like state of the protein. Biochimica et Biophysica Acta (BBA)-Biomembranes(BBAB). 2012 Sep 30;1818(9):2302-2313.

Mondragón-Rodríguez S, Trillaud-Doppia E, Dudilot A, Bourgeois C, Lauzon M, Leclerc N, Boehm J. Interaction of endogenous tau protein with synaptic proteins is regulated by N-methyl-D-aspartate receptor-dependent tau phosphorylation. Journal of Biological Chemistry(JBC).2012 Sep 14;287(38):32040-32053.

Narayanan S, Bösl B, Walter S, Reif B. Importance of low-oligomeric-weight species for prion propagation in the yeast prion system Sup35/Hsp104. Proceedings of the National Academy of Sciences(PNAS) 2003 Aug 5;100(16):9286-92891.

Lee HJ, Suk JE, Bae EJ, Lee JH, Paik SR, Lee SJ. Assembly-dependent endocytosis and clearance of extracellular a-synuclein. The international journal of biochemistry & cell biology.(IJBCB) 2008 Dec 31;40(9):1835-1849.

Yu C, Nwabuisi-Heath E, Laxton K, LaDu MJ. Endocytic pathways mediating oligomeric Aβ42 neurotoxicity. Molecular neurodegeneration(MN) 2010 May 17;5(1):19.

Ivanov AI. Pharmacological inhibition of endocytic pathways: is it specific enough to be useful?. Exocytosis and Endocytosis(EE). 2008:15-33.

Wang HY, Lee DH, D'Andrea MR, Peterson PA, Shank RP, Reitz AB. β-Amyloid1–42 binds to α7 nicotinic acetylcholine receptor with high affinity implications for Alzheimer's disease pathology. Journal of Biological Chemistry(JBC). 2000 Feb 25;275(8):5626-5632.

Nagele RG, D’andrea MR, Anderson WJ, Wang HY. Intracellular accumulation of β-amyloid 1–42 in neurons is facilitated by the α7 nicotinic acetylcholine receptor in Alzheimer’s disease. Neuroscience. 2002 Mar 12;110(2):199-211.

Bu G, Cam J, Zerbinatti C. LRP in Amyloid‐β Production and Metabolism. Annals of the New York Academy of Sciences. 2006 Nov 1;1086(1):35-53.

Kurup P, Zhang Y, Xu J, Venkitaramani DV, Haroutunian V, Greengard P, Nairn AC, Lombroso PJ. Aβ-mediated NMDA receptor endocytosis in Alzheimer's disease involves ubiquitination of the tyrosine phosphatase STEP61. Journal of Neuroscience, (JN). 2010 Apr 28;30(17):5948-5957.

Kessels HW, Nabavi S, Malinow R. Metabotropic NMDA receptor function is required for β-amyloid–induced synaptic depression. Proceedings of the National Academy of Sciences. 2013 Mar 5;110(10):4033-4038.

Larson M, Sherman MA, Amar F, Nuvolone M, Schneider JA, Bennett DA, Aguzzi A, Lesné SE. The complex PrPc-Fyn couples human oligomeric Aβ with pathological Tau changes in Alzheimer's disease. Journal of Neuroscience, (JN). 2012 Nov 21;32(47):16857-16871.

Klein C, Krämer EM, Cardine AM, Schraven B, Brandt R, Trotter J. Process outgrowth of oligodendrocytes is promoted by interaction of fyn kinase with the cytoskeletal protein tau. Journal of Neuroscience, (JN). 2002 Feb 1;22(3):698-707.

Bhaskar K, Yen SH, Lee G. Disease-related modifications in tau affect the interaction between Fyn and Tau. Journal of Biological Chemistry, (JBC). 2005 Oct 21;280(42):35119-125.

Peters PJ, Mironov A, Peretz D, van Donselaar E, Leclerc E, Erpel S, DeArmond SJ, Burton DR, Williamson RA, Vey M, Prusiner SB. Trafficking of prion proteins through a caveolae-mediated endosomal pathway. The Journal of cell biology, (JCB). 2003 Aug 18;162(4):703-717.

Le Corre S, Klafki HW, Plesnila N, Hübinger G, Obermeier A, Sahagún H, Monse B, Seneci P, Lewis J, Eriksen J, Zehr C. An inhibitor of tau hyperphosphorylation prevents severe motor impairments in tau transgenic mice. Proceedings of the National Academy of Sciences. 2006 Jun 20;103(25):9673-9678.

Varghese M, Ho L, Wang J, Zhao W, Levine S, Ono K, Mannino S, Pasinetti GM. Green coffee as a novel agent for Alzheimer’s disease prevention by attenuating diabetes. Translational Neuroscience, (TN). 2014 Jun 1;5(2):111-116.

Berger Z, Ravikumar B, Menzies FM, Oroz LG, Underwood BR, Pangalos MN, Schmitt I, Wullner U, Evert BO, O'kane CJ, Rubinsztein DC. Rapamycin alleviates toxicity of different aggregate-prone proteins. Human Molecular Genetics, (HMG). 2005 Dec 20;15(3):433-442.

Troquier L, Caillierez R, Burnouf S, J Fernandez-Gomez F, Grosjean ME, Zommer N, Sergeant N, Schraen-Maschke S, Blum D, Buee L. Targeting phospho-Ser422 by active Tau Immunotherapy in the THYTau22 mouse model: a suitable therapeutic approach. Current Alzheimer Research, (CAR). 2012 May 1;9(4):397-405.

Eliot J, Moe JG. Targeting tau for Alzheimer’s disease and related neurodegenerative disorders. Drug Discovery, (DD). 2012:16-21.

del Ser T, Steinwachs KC, Gertz HJ, Andres MV, Gomez-Carrillo B, Medina M, Vericat JA, Redondo P, Fleet D, Leon T. Treatment of Alzheimer's disease with the GSK-3 inhibitor tideglusib: a pilot study. Journal of Alzheimer's Disease, (JAD). 2013 Jan 1;33(1):205-215.

Baddeley TC, McCaffrey J, Storey JM, Cheung JK, Melis V, Horsley D, Harrington CR, Wischik CM. Complex disposition of methylthioninium redox forms determines efficacy in tau aggregation inhibitor therapy for Alzheimer’s disease. Journal of Pharmacology and Experimental Therapeutics, (JPET). 2015 Jan 1;352(1):110-118.

Wischik CM, Staff RT, Wischik DJ, Bentham P, Murray AD, Storey J, Kook KA, Harrington CR. Tau aggregation inhibitor therapy: an exploratory phase 2 study in mild or moderate Alzheimer's disease. Journal of Alzheimer's Disease, (JAD). 2015 Jan 1;44(2):705-720.

Mohideen SS, Yamasaki Y, Omata Y, Tsuda L, Yoshiike Y. Nontoxic singlet oxygen generator as a therapeutic candidate for treating tauopathies. Scientific reports, (SR). 2015 Jun 1;5:10821.

Melis V, Magbagbeolu M, Rickard JE, Horsley D, Davidson K, Harrington KA, Goatman K, Goatman EA, Deiana S, Close SP, Zabke C. Effects of oxidized and reduced forms of methylthioninium in two transgenic mouse tauopathy models. Behavioural pharmacology, (BP). 2015 Jun;26(4):353-368.

Hochgräfe K, Sydow A, Matenia D, Cadinu D, Könen S, Petrova O, Pickhardt M, Goll P, Morellini F, Mandelkow E, Mandelkow EM. Preventive methylene blue treatment preserves cognition in mice expressing full-length pro-aggregant human Tau. Acta Neuropathologica Communications, (ANC). 2015 May 10;3(1):25.

Bulic B, Pickhardt M, Mandelkow EM, Mandelkow E. Tau protein and tau aggregation inhibitors. Neuropharmacology. 2010 Oct 31;59(4):276-289.




DOI: https://doi.org/10.37628/ijbb.v3i1.165

Refbacks

  • There are currently no refbacks.