Open Access Open Access  Restricted Access Subscription or Fee Access

The Basics of Transgenic and Agrobacterium

Kanchan Suchdeva


Transgenesis is an extremely powerful tool to analyses and manipulate the genetics of mice and other animals. As defined above, a transgene is a segment of experimentally introduced DNA, carried in a host animal's genome. A transgene may be designed to encode a new gene product in the transgenic animal, or it may be introduced at its place of insertion in order to alter or disrupt a host gene. In many cases, for example, a transgene will both disrupt an endogenous gene while expressing a new gene product. Thus transgenesis applications take advantage of its ability to induce genetic alterations in both loss-of-function and gain-of-function. The basics of the transgenics have been explained in this review. In addition, how Agrobacterium tumefaciens has been described as being used in transgenic process


Agrobacterium, Ti-Plasmid, transgenics, vir genes, transgenic plant

Full Text:



Atmakuri, K., Cascales, E., Burton, O.T., Banta, L., and Christie, P.J. (2007). Agrobacterium ParA/MinD-like VirC1 spatially coordinate early conjugative DNA transfer reactions. EMBO J. 26, 2540–2551. doi: 10.1038/sj.emboj.7601696

Banta, L.M., and Montenegro, M. (2008). Agrobacterium and plant biotechnology,” in Agrobacterium: From Biology to Biotechnology, eds T. Tzfira and V. Citovsky (New York, NY: Springer Science+Business Media), 73–147.

Cascales, E., Atmakuri, K., Sakar, M. K., and Christie, P. J. (2013). DNA substrate–induced activation of the Agrobacterium VirB/VirD4 type IV secretion system. J. Bacteriol. 195, 2691–2704. doi: 10.1128/JB.00114-13.

Dym, O., Albeck, S., Unger, T., Jacobovitch, J., Branz-burg, A., Michael, Y., et al. (2008). Crystal structure of the Agrobacterium virulence complex VirE1-VirE2 reveals a flexible protein that can accommodate different partners. Proc. Natl. Acad. Sci. U.S.A. 105, 11170–11175. doi: 10.1073/pnas.

Gelvin, S.B. (2012). Traversing the cell: Agrobacterium T-DNA’s journey to the host genome. Front. Plant Sci. 3:52. doi: 10.3389/fpls.2012.00052

He, F., Nair, G. R., Soto, C.S., Chang, Y., Hsu, L., Ronzone, E., et al. (2009). Molecular basis of ChvE function in sugar binding, sugar utilization and virulence in Agrobacterium tumefaciens. J. Bacteriol. 191, 5802–5813. doi: 10.1128/JB.00451-09

Kado, C. (2014). Historical account on gaining insights on the mechanism of crown gall tumorigenesis induced by Agrobacterium tumefaciens. Front. Microbiol. 5:340. doi: 10.3389/fmicb.2014.00340

Low, H.H., Gubellini, F., Rivera-Calzada, A., Braun, N., Connery, S., Dujeancourt, A., et al. (2014). Structure of a type IV secretion system. Nature 508, 550–553. doi: 10.1038/nature13081

Ma, L.S., Hachani, A., Lin, J.S., Filloux, A., and Lai, E. M. (2014). Agrobacterium tumefaciens deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial competition in plants. Cell Host Microbe 16, 94–104. doi: 10.1016/j.chom.2014.06.002

Nair, G.R., Lai, X., Wise, A., Wonjae, B.W., Jacobs, M., and Binns, A.N. (2011). The integrity of the periplasmic domain of the VirA sensor kinase is critical for optimal coordination of the virulence signal response in Agrobacterium tumefaciens. J. Bacteriol. 193, 1436–1448. doi: 10.1128/JB.01227-10.

Pitzschke, A.A. (2013). Agrobacterium and plant defense-transformation success hangs by a thread. Front. Plant Sci. 4:519 doi: 10.3389/fpls.2013.00519

Russell, A.B., Peterson, S. B., and Mougous, J.D. (2014). Type VI secretion system effectors: poisons with a purpose. Nat. Rev. Microbiol. 12, 137–148. doi: 10.1038/nrmicro3185

Sakalis, P.A., van Heusden, G.P.H., and Hooykaas, P.J.J. (2014). Visualization of VirE2 protein translocation by the Agrobacterium type IV secretion system into host cells. Microbiol. Open 3, 104–117. doi: 10.1002/mbo3.152

Tsai, Y. L., Chaing, Y. R., Wu, C. F., Narberhaus, F., and Lai, E. M. (2012). One out of four: HspL but no other heat shock protein of Agrobacterium tumefaciens acts as efficient virulence-promoting VirB8 chaperone. PLoS ONE 7:e49685. doi: 10.1371/journal.pone.0049685

Wu, C.-F., Lin, J.-S., Shaw, G.-C., and Lai, E.-M. (2012). Acid-induced type VI secretion system is regulated by ExoR-ChvG/ChvI signaling cascade in Agrobacterium tumefaciens. PLOS Pathog. 8:e1002938. doi: 10.1371/journal.ppat.1002938

Yuan, Z.C., Liu, P., Saenkham, P., Kerr, K., and Nester, E. W. (2008). Transcriptome profiling and functional analysis of Agrobacterium tumefaciens reveals a general conserved response to acidic conditions (pH 5.5) and a complex acid-mediated signaling involved in Agrobacterium–plant interactions. J. Bacteriol. 190, 494–507. doi: 10.1128/JB.01387-07

Zou, S.B., Hersch, S.J., Roy, H., Wiggers, J.B., Leung, A.S., Buranyi, S., et al. (2012). Loss of elongation factor P disrupts bacterial outer membrane integrity. J. Bacteriol. 194, 413–425. doi: 10.1128/JB.05864-11.


  • There are currently no refbacks.