Open Access Open Access  Restricted Access Subscription or Fee Access

Bacteriophage Therapy in Human Bacterial Infections

Durgadas Govind Naik


The difficulty faced in the treatment of infections caused by drug resistant organisms has led to look for alternatives. Phage therapy has been in use for many decades. Their potential as a therapeutic agent is realized in recent years, especially after the emergence of multiple drug resistant organisms. Results of many studies conducted in last few years suggest that bacteriophages can be used to treat human infections. Phage therapy is considered as one of the promising approaches to treat bacterial infections especially caused by multiple drug resistant strains. In phage therapy or in animal models, a number of bacteria including Staphylococcus aureus, Vibrio parahaemolyticus, Pseudomonas aeruginosa Bacillus anthracis, Bacillus cereus, Escherichia coli, Vibrio cholerae, Burkholderia pseudomallei, Acinetobacter baumannii, Salmonella species, have been studied with positive outcome. Abundant bacteriophages that are present in gastrointestinal system play a role not only as regulators of the bacterial population but may also have an immunomodulatory role. Bacteriophages can be used in the biocontrol of pathogens in food animals and biofilms. Further clinical, immunomodulation studies are required. There is a need for continuous monitoring of the development of phage resistance.

Full Text:



A. Górski, R. Międzybrodzki, B. Weber-Dąbrowska, W. Fortuna, S. Letkiewicz, P. Rogóż, E. Jończyk-Matysiak, K. Dąbrowska, J. Majewska, J. Borysowski. Phage therapy: combating infections with potential for evolving from merely a treatment for complications to targeting diseases, Front Microbiol. 2016; 7: 1515p. eCollection 2016.

J.R. Shiley, K.K. Comfort, J.B. Robinson. Immunogenicity and antimicrobial effectiveness of Pseudomonas aeruginosa specific bacteriophage in a human lung in vitro model, Appl Microbiol Biotechnol. 2017. doi: 10.1007/s00253-017-8504-1.

D.R. Roach, C.Y. Leung, M. Henry, E. Morello, D. Singh, J.P. Di Santo, J.S. Weitz, L. Debarbieux. Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen, Cell Host Microbe. 2017; 22(1): 38–47.e4p. doi: 10.1016/j.chom.2017.06.018.).

N. Dufour, L. Debarbieux. Phage therapy: a realistic weapon against multidrug resistant bacteria, Med Sci (Paris). 2017; 33(4): 410–6p. doi: 10.1051/medsci/20173304011.

J. Soothill. Use of bacteriophages in the treatment of Pseudomonas aeruginosa infections, Expert Rev Anti Infect Ther. 2013; 11(9): 909–15p. doi: 10.1586/14787210.2013.826990.)

M.K. Mirzaei, C.F. Maurice. Ménage à trois in the human gut: interactions between host, bacteria and phages, Nat Rev Microbiol. 2017; 15(7): 397–408p. doi: 10.1038/nrmicro.2017.30.

S.P. Szafrański, A. Winkel, M. Stiesch. The use of bacteriophages to biocontrol oral biofilms, J Biotechnol. 2017; 250: 29–44p. doi: 10.1016/j.jbiotec.2017.01.002.

M. Shlezinger, L. Khalifa, Y. Houri-Haddad, S. Coppenhagen-Glazer, G. Resch, Y.A. Que, S. Beyth, E. Dorfman, R. Hazan, N. Beyth. Phage therapy: a new horizon in the antibacterial treatment of oral pathogens, Curr Top Med Chem. 2017; 17(10): 1199–211p. doi: 10.2174/1568026616666160930145649.

D.P. Pires, L. Melo, D. Vilas Boas, S. Sillankorva, J. Azeredo. Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections, Curr Opin Microbiol. 2017; 39: 48–56p.

S. Latz, A. Wahida, A. Arif, H. Häfner, M. Hoß, K. Ritter, H.P. Horz. Preliminary survey of local bacteriophages with lytic activity against multi-drug resistant bacteria, J Basic Microbiol. 2016; 56(10): 1117–23p. doi: 10.1002/jobm.201600108.

D.M. Lin, B. Koskella, H.C. Lin. Phage therapy: an alternative to antibiotics in the age of multi-drug resistance, World J Gastrointest Pharmacol Ther. 2017; 8(3): 162–73p.

A. Górski, K. Dąbrowska, R. Międzybrodzki, B. Weber-Dąbrowska, M. Łusiak-Szelachowska, E. Jończyk-Matysiak, J. Borysowski. Phages and immunomodulation, Future Microbiol. 2017; 12: 905–14p. doi: 10.2217/fmb-2017-0049.

M. Łusiak-Szelachowska, B. Weber-Dąbrowska, E. Jończyk-Matysiak, R. Wojciechowska, A. Górski. Bacteriophages in the gastrointestinal tract and their implications, Gut Pathog. 2017; 9: 44p. doi: 10.1186/s13099-017-0196-7. eCollection 2017.

S. Sabouri, Z. Sepehrizadeh, S. Amirpour-Rostami, M. Skurnik. A minireview on the in vitro and in vivo experiments with anti-Escherichia coli O157:H7 phages as potential biocontrol and phage therapy agents, Int J Food Microbiol. 2017; 243: 52–7p. doi: 10.1016/j.ijfoodmicro.2016.12.004. Epub 2016 Dec 11.

J. Zhang, Z. Li, Z. Cao, L. Wang, X. Li, S. Li, Y. Xu. Bacteriophages as antimicrobial agents against major pathogens in swine: a review, J Anim Sci Biotechnol. 2015; 6(1): 39p. doi: 10.1186/s40104-015-0039-7. eCollection 2015.

M. Dalmasso, C. Hill, R.P. Ross. Exploiting gut bacteriophages for human health, Trends Microbiol. 2014; 22(7): 399–405p. doi: 10.1016/j.tim.2014.02.010.

Z. Golkar, O. Bagasra, D.G. Pace. Bacteriophage therapy: a potential solution for the antibiotic resistance crisis, J Infect Dev Ctries. 2014; 8(2): 129–36p. doi: 10.3855/jidc.3573.

S.T. Abedon, P. García, P. Mullany, R. Aminov 4* Phage Therapy: Past,Present and Future Frontiers in Microbiology |, June 2017 | Volume 8 | Article 981.

P. Veiga-Crespo, J.M. Ageitos, M. Poza, T.G. Villa. Enzybiotics: a look at the future, recalling the past, J Pharm Sci. 2007; 96: 1917–24p. doi: 10.1002/jps.20853.

D.J. Malik, I.J. Sokolov, G.K. Vinner, F. Mancuso, S. Cinquerrui, G.T. Vladisavljevic, M.R.J. Clokie, N.J. Garton, A.G.F. Stapley, A. Kirpichnikova. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy, J Colloid Interface Sci. 2017; pii: S0001-8686(16)30392-X. doi: 10.1016/j.cis.2017.05.014.

C. Bardina, J. Colom, D.A. Spricigo, J. Otero, M. Sánchez-Osuna, P. Cortés, M. Llagostera. Genomics of three new bacteriophages useful in the biocontrol of salmonella, Front Microbiol. 2016; 7: 545p. doi: 10.3389/fmicb.2016.00545. eCollection 2016.

D. Gutiérrez, L. Rodríguez-Rubio, P. García, C. Billington, A. Premarante, A. Rodríguez, B. Martínez. Phage sensitivity and prophage carriage in Staphylococcus aureus isolated from foods in Spain and New Zealand, Int J Food Microbiol. 2016; 230: 16–20p. doi: 10.1016/j.ijfoodmicro.2016.04.019.

D.P. Pires, D. Vilas Boas, S. Sillankorva, J. Azeredo. Phage therapy: a step forward in the treatment of pseudomonas aeruginosa infections, J Virol. 2015; 89(15): 7449–56p. doi: 10.1128/JVI.00385-15.

T.S. Brady, B.D. Merrill, J.A. Hilton, A.M. Payne, M.B. Stephenson, S. Hope. Bacteriophages as an alternative to conventional antibiotic use for the prevention or treatment of Paenibacillus larvae in honeybee hives, J Invertebr Pathol. 2017; 150: 94–100p doi: 10.1016/j.jip.2017.09.010.

A. Wernicki, A. Nowaczek, R. Urban-Chmiel. Bacteriophage therapy to combat bacterial infections in poultry, Virol J. 2017; 14(1): 179p. doi: 10.1186/s12985-017-0849-7.

J.E.E. Totté, M.B. van Doorn, S.G.M.A. Pasmans. Successful treatment of chronic Staphylococcus aureus-related dermatoses with the topical endolysin staphefekt SA.100: a report of 3 cases, Case Rep Dermatol. 2017; 9(2): 19–25p. doi: 10.1159/000473872. eCollection 2017 May-Aug.

J. Szaleniec, A. Górski, M. Szaleniec, R. Międzybrodzki, B. Weber-Dąbrowska, P. Stręk, J. Składzień. Can phage therapy solve the problem of recalcitrant chronic rhinosinusitis? Future Microbiol. 2017. doi: 10.2217/fmb-2017-0073.

R.R. Pallavali, V.L. Degati, D. Lomada, M.C. Reddy, V.R.P. Durbaka. Isolation and in vitro evaluation of bacteriophages against MDR-bacterial isolates from septic wound infections, PLoS One. 2017; 12(7): e0179245p. doi: 10.1371/journal.pone.0179245. eCollection 2017.

Y. Liu, Z. Mi, W. Niu, X. An, X. Yuan, H. Liu, Y. Wang, Y. Feng, Y. Huang, X. Zhang, Z. Zhang, H. Fan, F. Peng, P. Li, Y. Tong, C. Bai. Potential of a lytic bacteriophage to disrupt Acinetobacter baumannii biofilms in vitro, Future Microbiol. 2016; 11: 1383–93p.

30. Guang-Han O, Leang-Chung C, Vellasamy KM, Mariappan V, Li-Yen C, Vadivelu J. Experimental Phage Therapy for Burkholderia pseudomallei Infection. PLoS One. 2016 Jul 7;11(7): e0158213. doi: 10.1371/journal.pone.0158213. eCollection 2016.)

31. Gu J, Li X, Yang M, Du C, Cui Z, Gong P, Xia F, Song J, Zhang L, Li J, Yu C, Sun C, Feng X, Lei L, Han W. Therapeutic effect of Pseudomonas aeruginosa phage YH30 on mink hemorrhagic pneumonia. Veterinary MicrobiologyVolume 190, 15 July 2016, Pages 5-11

32.Xu J, Chen M, He L, Zhang S, Ding T, Yao H, Lu C, Zhang W. Isolation and characterization of a T4-like phage with a relatively wide host range within Escherichia coli. J Basic Microbiol. 2016 Apr;56(4):405-21. doi: 10.1002/jobm.201500440. Epub 2015 Dec 23.)

33. García C, Marín C, Catalá-Gregori P, Soriano JM. Use of bacteriphages against Salmonella Enteritidis: a prevention tool. Nutr Hosp. 2015 Jun 1;31(6):2740-2. doi: 10.3305/nh.2015.31.6.8975.

34.Jończyk-Matysiak E, Kłak M, Weber-Dąbrowska B, Borysowski J, Górski A. Possible use of bacteriophages active against Bacillus anthracis and other B. cereus group members in the face of a bioterrorism threat. Biomed Res Int. 2014; 2014:735413. doi: 10.1155/2014/735413. Epub 2014 Aug 28.

35.Jun JW, Shin TH, Kim JH, Shin SP, Han JE, Heo GJ, De Zoysa M, Shin GW, Chai JY, Park SC. Bacteriophage therapy of a Vibrio parahaemolyticus infection caused by a multiple-antibiotic-resistant O3:K6 pandemic clinical strain. J Infect Dis. 2014 Jul 1;210(1):72-8. Epub 2014 Feb 19.

36.Yen M, Cairns LS, Camilli A. A cocktail of three virulent bacteriophages prevents Vibrio cholerae infection in animal models. Nat Commun. 2017 Feb 1;8:14187. doi: 10.1038/ncomms14187.

37. Zhang H, Li L, Zhao Z, Peng D, Zhou X. Polar flagella rotation in Vibrio parahaemolyticus confers resistance to bacteriophage infection. Sci Rep. 2016 May 18;6:26147. doi: 10.1038/srep26147.



  • There are currently no refbacks.