Open Access Open Access  Restricted Access Subscription or Fee Access

Studies on the Physicochemical Properties and Bioavailability of Nanoparticles in Drug Encapsulation–A Review

DEBASREE GHOSH, Shreshtha Kanjilal

Abstract


Nanotechnology plays an important role in the field of biomedicine which include nanoparticle containing drug development, drug delivery, diagnostic tests, vaccination and other different therapies. This article focused on the role of nano-carrier in drug encapsulation and delivery. Drugs which show poor bioavailability, poor solubility, nonspecific targeting ability and increased toxicity are encapsulated within nano-carriers depending on their physicochemical property, biocompatibility, high drug loading capacity etc. Entrapment within nanoparticle increases the bioavailability, solubility, circulation time, cellular uptake of the therapeutic agent and encapsulated drugs are also target specific, shows deceased toxic side effects and these drugs are internalised within the cell by active or passive targeting in a controlled manner which increases the therapeutic index of the drug. Drugs are encapsulated within different nano-carriers such as liposome (doxorubicin [2 mg/ml] an anticancer drug was added within 16 mg/ml liposomal concentration), micelles (Paclitaxel [0.025 mg/ml] an anticancer drug was added to 0.02 mg/ml micelle formulation), dendrimers, carbon nanotube (0.162 mg/ml) and other inorganic materials. This review briefly describes the unique structure of liposome, role of liposome on drug encapsulation and delivery, cancer therapy by liposomal formulation and different liposome containing anticancer, antibacterial drugs.  Nanotechnology also plays an important role in the field of vaccination and diagnostic area. Nano-vaccines are very target specific and increase the immunogenic properties of the cell. However, the mechanisms of nanoparticle containing vaccination, different diagnostic tests are highlighted in this review.


Keywords


Nano carrier, drug encapsulation, biocompatibility, liposome, cancer therapy, mononuclear phagocytic system, vaccination.

Full Text:

PDF

References


Salata, O.V. (2004). Applications of nanoparticles in biology and medicine. Journal of Nanobiotechnology, 2(3), 1-6.

Khan, Ibrahim., & Khan, Idrees. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemisty, 12(7), 908-931.

Mobasser, S., and Firoozi, A.A. (2016). Review of Nanotechnology Applications in Science and Engineering. Journal of Civil Engineering and Urbanism, 6(4), 84-93.

Kumari, A., Singla, R., Guliani, A., Yadav, K. S. (2014). Review article: Nanoencapsulation for drug delivery. EXCLI Journal, 13, 265-286.

Sharma, D., Chaudhery, M.H. (2018). Smart nanomaterials in pharmaceutical analysis. Arabian Journal of Chemistry, 13, 3319-3343.

Vega-Vásquez, P., Nathan, S, M., Joseph, I. (2020). Nanoscale Drug Delivery Systems: From Medicine to Agriculture. Frontiers in Bioengineering and Biotechnology, 8,79.

Jat, K.S., Gandhi, A.H., Bhattacharya, J., Sharma, K.M. (2021) Magnetic nanoparticles: an emerging nano-based tool to fight against viral infections. Materials Advances, 2(14),4479-4496.

Yadav, N., Singh, S. (2021). Nanoparticles Catalyzing Enzymatic Reactions: Recent Developments and Future Prospects. Emerging Trends in Nanomedicine, 51-80.

Rout, G.K., Shin, Han-Seung., Gouda, S., Sahoo, S., Das, G., Fraceto, F.L., Patra, k.J. (2018). Current advances in nanocarriers for biomedical research and their applications. Artificial Cells, Nanomedicine, and Biotechnology, 46, 1053-1062.

Singh, L., Kruger, H. G., Maguire, G., Govender, T., & Parboosing, R. (2017). The role of nanotechnology in the treatment of viral infections. Therapeutic advances in infectious disease, 4(4), 105–131.

Kim, G.M., Park, Y.J., Shon, Y., Kim, G., Shim, G., Oh, Y.K. (2014). Nanotechnology and vaccine development. Asian Journal of Pharmaceutical Sciences, 9(5), 227-235.

Bhardwaj, P., Bhatia, E., Sharma, S., Ahamad, N., & Banerjee, R. (2020). Advancements in prophylactic and therapeutic nanovaccines. Acta biomaterialia, 108, 1–21.

Wanigasekara, J., & Wanigasekara, C. (2016). Applications of Nanotechnology in Drug Delivery and Design-An Insight. Current Trends in Biotechnology and Pharmacy, 10 (0973-8916), 78-91.

Gupta, S., Kesarla, R., & Omri, A. (2013). Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems. ISRN pharmaceutics, 2013, 848043.

Jia L. (2005). Nanoparticle Formulation Increases Oral Bioavailability of Poorly Soluble Drugs: Approaches Experimental Evidences and Theory. Current nanoscience, 1(3), 237–243.

Patra, K. J., Das, G., Fraceto, F.L., Campos, R.E., Rodriguez Torres, Maria del Pilar., Renato, G., Swamy, K.M., Sharma, S., Habtemariam, Solomon., Shin, Han Seung. (2018). Nano based drug delivery systems: Recent developments and future prospects. Journal of Nanobiotechnology, 13(71), 1-33.

Akinc, A., & Battaglia, G. (2013). Exploiting endocytosis for nanomedicines. Cold Spring Harbor perspectives in biology, 5(11), a016980.

Vargason, M.A., Anselmo, C.A., Mitragotri, S. (2021). The evolution of commercial drug delivery Technologies. Nature biomedical engineering, 1-17.

Liu, L., Ye, Q., Lu, M., Lo, Y.C., Hsu, Y.H., Wei, M.C., Chen, Y.H., Lo, S.C., Wang, S.J., Bain, D.J., Ho, C. (2015). A new approach to reduce toxicities and to improve bioavailabilities of platinum-containing anti-cancer nanodrugs. Sci Rep, 5(10881).

Li, X., Wang, L., Fan, Y., Feng, Q., Cui, Fu-zhai. (2012). Biocompatibility and Toxicity Nanoparticles and Nanotubes. Journal of nanomaterial, 2012, 1-19.

Murthy, K.S. (2007). Nanoparticles in modern medicine: State of the art and future challenges. International Journal of Nanomedicine, 2(2), 129-141.

Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Woo Joo, S., Zarghami, N., Hanifehpour, Y., Samiei, M., Kouhi, M., Nejati-Koshki, K. (2013). Liposome: classification, preparation, and applications. Springer Open Journal, 8(102), 1-9.

Çağdaş, M., Sezer, D.A., and Bucak, S. (2014). Liposomes as Potential Drug Carrier Systems for Drug Delivery. Arabian Journal of Chemistry, 1-51.

Allen, T.M., & Chonn, A. (1987). Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS letters, 223(1), 42–46.

Ong, S. G., Ming, L.C., Lee, K.S., & Yuen, K. H. (2016). Influence of the Encapsulation Efficiency and Size of Liposome on the Oral Bioavailability of Griseofulvin-Loaded Liposomes. Pharmaceutics, 8(3), 25.

Allen, T.M. 1997.Liposomes Opportunities in drug delivery. Drugs, 54(4), 8–14.

Hofheinz, R.D., Gnad-Vogt, S.U., Beyer, U., Hochhaus, A. 2005. Liposomal encapsulated anti-cancer drugs. Anticancer Drugs, 16, 691–707.

Hemanthkumar, M., Spandana, V. 2011. Liposomal encapsulation technology a novel drug delivery system designed for ayurvedic drug preparation. IRJP, (10), 4–7.

Nguyen, T.X., Huang, L., Gauthier, M., Yang, G., & Wang, Q. (2016). Recent advances in liposome surface modification for oral drug delivery. Nanomedicine (London, England), 11(9), 1169–1185.

Zhen, S., & Li, X. (2020). Liposomal delivery of CRISPR/Cas9. Cancer gene therapy, 27(7-8), 515–527. https://doi.org/10.1038/s41417-019-0141-7

Li, M., Du, C., Guo, N., Teng, Y., Meng, X., Sun, H., Li, S., Yu, P., & Galons, H. (2019). Composition design and medical application of liposomes. European journal of medicinal chemistry, 164, 640–653.

Daraee, H., Etemadi, A., Kouhi, M., Alimirzalu, S., & Akbarzadeh, A. (2016). Application of liposomes in medicine and drug delivery. Artificial cells, nanomedicine, and biotechnology, 44(1), 381–391.

Alice, D., Martina, S. (2015). Polymeric drug delivery technique. ALDRICH Material science, 1-60.

Verma, D., Gulati, N., Kaul, S., Mukherjee, S., Nagaich, U. (2018). Protein Based Nanostructures for Drug Delivery. Journal of Pharmaceutics, 2018, 1-18.

Caroline, F., Thorn, C.O., Russ, B.A. (2011). Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics, 21(7), 440-446.

Boman, N.L., Bally, B.M., Cullis, R.P., Lawrence, D., Murray, S. (1995). Encapsulation of Vincristine in liposomes reduces Its toxicity and improves its anti tumor efficacy. Journal of liposome research, 5(3), 523-541.

Stone, N.R., Bicanic, T., Hope, W. (2016). Liposomal Amphotericin B (AmBisome): A review of pharmacokinetics, clinical experience and future directions. Europe PMC funders. 76(4), 485-500.

Zylberberg, C., and Matosevic, S. (2016). Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory landscape. Drug Delivery, 23(9), 3319-3329.

Kaur, C.D., Nahar, M., & Jain, N.K. (2008). Lymphatic targeting of zidovudine using surface-engineered liposomes. Journal of drug targeting, 16(10), 798–805.

Yadav, D., Kumar, S., Pandey, D., Dutta, R.K. (2017). Liposomes for Drug Delivery. Journal of Biotechnology and Biomaterials, 7 (276).

Gentile, E., Cilurzo, F., Di Marzio, L., Carafa, M., Ventura, C. A., Wolfram, J., Paolino, D., Celia, C. (2013). Liposomal chemotherapeutics. Future oncology (London, England), 9(12), 1849–1859.

Pandey, H., Rani, R., Agarwal, V. (2016). Liposome and Their Applications in Cancer Therapy. Brazilian archives of biology and technology an international journal, 59, 1-10.

Olusanya, T.O.B., Haj Ahmad, R.R., Ibegbu, D.M., Smith. J.R., Elkordy, A.A. (2018). Liposomal Drug Delivery Systems and Anticancer Drugs. Molecules. 23(4), 907.

Beltrán Gracia, E., López Camacho, A., Higuera Ciapara, I., Velázquez Fernández, B.J., Vallejo Cardona, A.A. (2019). Nanomedicine review: clinical developments in liposomal applications. Cancer Nanotechnology, 10 (11).

Wang, H., Yu, J., Lu, X., He, X. (2016). Nanoparticle systems reduce systemic toxicity in cancer treatment. Nanomedicine (Lond.), 11(2), 103–106.

Olgen S. (2018). Overview on Anticancer Drug Design and Development. Current medicinal chemistry, 25(15), 1704–1719.

Hegazy, M. G., Imam, A. M., & Abdelghany, B. E. (2020). Evaluation of cytotoxic and anticancer effect of Orobanche crenata methanolic extract on cancer cell lines. Tumour biology: the journal of the International Society for Onco-developmental Biology and Medicine, 42(5).

Araújo Lopes, de, C.S., Santos Giuberti, dos, C., Ribeiro Rocha, G.T., Santos Ferreira, dos, D., Leite, A.E., Oliveira, C.M. (2013). Liposomes as Carriers of Anticancer Drugs. IntechOpen, 85-124.

Gu, Z., Da Silva, C.G., Van der Maaden, K., Ossendorp, F., Cruz, LJ. (2020). Liposome-Based Drug Delivery Systems in Cancer Immunotherapy. Pharmaceutics, 12(11). [50] Alavi, M., Hamidi, M.,(2019). Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metabolism and Personalized Therapy, 34(1).

Peek, L.J., Middaugh, C.R., & Berkland, C. (2008). Nanotechnology in vaccine delivery. Advanced drug delivery reviews, 60(8), 915–928.

Pati, R., Shevtsov, M., Sonawane, A. (2018). Nanoparticle Vaccines Against Infectious Diseases. Frontiers in Immunology, 9(2224), 1-16.

Bulbake, U., Doppalapudi, S., Kommineni, N., & Khan, W. (2017). Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics, 9(2), 12.

Shin, D.M., Shukla, S., Chung, H.Y., Beiss, V., Chan, S., Wirth, M.D., Chen, A., Sack, M., Jonathan, K.P., Nicole, F.S. (2020). COVID-19 vaccine development and a potential nanomaterial path forward. Nature nanotechnology, 15, 646-655.




DOI: https://doi.org/10.37628/ijcbcp.v7i1.662

Refbacks

  • There are currently no refbacks.