Open Access Open Access  Restricted Access Subscription or Fee Access

Endothelial Cell Metabolism in Physiological and Pathological Angiogenesis

Anam Parveen, Savneet Kaur


Endothelial cells are inert blood cell lining. They are active in formation of new blood vessels like angiogenesis and in both healthy and diseases. The main motive of angiogenesis is hypoxia that mainly observes in diseases like cancer and atherosclerosis. It has long been established that hypoxic signaling and metabolism changes are highly interlinked.EC functions include blood clotting, formation of vasoconstriction and vasodilatation that control blood pressure, repair of damaged and diseased organs by inoculation of blood vessels cells. ECs depends on an intricate metabolic wiring which is characterized by intracellular compartmentalization, which also uses metabolites for epigenetic regulation of EC subtype differentiation, crosstalk via metabolite release with other cell types, and also exhibit EC subtype-specific metabolic traits.

Full Text:



Risau. Mechanisms of angiogenesis, Nature. 1997; 386: 671–4p.

S. Isogai, N.D. Lawson, S. Torrealday, M. Horiguchi, B.M. Weinstein. Angiogenic network formation in the developing vertebrate trunk, Development. 2003; 130: 5281–90p.

H. Gerhardt, M. Golding, M. Fruttiger, C. Ruhrberg, A. Lundkvist, A. Abramsson, M. Jeltsch, C. Mitchell, K. Alitalo, D. Shima, et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia, J Cell Biol. 2003; 161: 1163–77p.

T. Tammela, G. Zarkada, E. Wallgard, A. Murtomaki, S. Suchting, M. Wirzenius, M. Waltari, M. Hellstrom, T. Schomber, R. Peltonen, et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation, Nature. 2008; 454: 656–60p.

H. Uyttendaele, G. Marazzi, G. Wu, Q. Yan, D. Sassoon, J. Kitajewski. Notch4/int-3, a mammary protooncogene, is an endothelial cell-specific mammalian Notch gene, Development. 1996; 122: 2251–9p.

R.C. Sainson, J. Aoto, M.N. Nakatsu, M. Holderfield, E. Conn, E. Koller, C.C. Hughes. Cell-autonomous notch signalling regulates endothelial cell branching and proliferation during vascular tubulogenesis, FASEB J. 2005; 19: 1027–9p.

J.J. Hofmann, M. Luisa Iruela-Arispe. Notch expression patterns in the retina: an eye on receptor–ligand distribution during angiogenesis, Gene Expr Patterns. 2007; 7: 461–70p.

N.D. Fisher, M. Hughes, M. Gerhard-Herman, N.K. Hollenberg. Flavanol-rich cocoa induces nitric-oxidedependent vasodilation in healthy humans, J Hypertens. 2003; 21: 2281–6p.

K. Takeshita, M. Satoh, M. Ii, M. Silver, F.P. Limbourg, Y. Mukai, Y. Rikitake, F. Radtke, T. Gridley, D.W. Losordo, et al. Critical role of endothelial Notch1 signalling in postnatal angiogenesis, Circ Res. 2007; 100: 70–8p.

Fijalkowska, W. Xu, S.A. Comhair, A.J. Janocha, L.A. Mavrakis, B. Krishnamachary, L. Zhen, T. Mao, A. Richter, S.C. Erzurum, et al. 2010.

Y. Huang, L. Lei, D. Liu, I. Jovin, R. Russell, R.S. Johnson, A. Di Lorenzo, F.J. Giordano. Normal glucose uptake in the brain and heart requires an endothelial cell-specific HIF-1a- dependent function, Proc Natl Acad Sci USA. 2012; 109: 17478–83p.

K. De Bock, M. Georgiadou, S. Schoors, A. Kuchnio, B.W. Wong, A.R. Cantelmo,A. Quaegebeur, B. Ghesquie`re, S. Cauwenberghs, G. Eelen, et al. Role of PFKFB3-driven glycolysis in vessel sprouting, Cell. 2013b; 154: 651–63p.

L. Lamalice, F. Le Boeuf, J. Huot. Endothelial cell migration during angiogenesis, Circ Res. 2007; 100: 782–94p.

J.A. Leopold, Y.Y. Zhang, A.W. Scribner, R.C. Stanton, J. Loscalzo. Glucose-6- phosphate dehydrogenase overexpression decreases endothelial cell oxidant stress and increases bioavailable nitric oxide, Arterioscler Thromb Vasc Biol. 2003b; 23: 411–7p.

B. Luo, Y. Soesanto, D.A. McClain. Protein modification by O-linked GlcNAc reduces angiogenesis by inhibiting Akt activity in endothelial cells, Arterioscler Thromb Vasc Biol. 2008; 28: 651–7p.

D.O. Croci, J.P. Cerliani, T. Dalotto-Moreno, S.P. Me´ndez-Huergo, I.D. Mascanfroni, S. Dergan-Dylon, M.A. Toscano, J.J. Caramelo, J.J. Garcı´a-Vallejo, J. Ouyang, et al. Glycosylation-dependent lectinreceptor interactions preserve angiogenesis in anti-VEGF refractory tumors, Cell. 2014; 156: 744–58p.

R. Tammali, A.B. Reddy, S.K. Srivastava, K.V. Ramana. Inhibition of aldose reductase prevents angiogenesis in vitro and in vivo, Angiogenesis. 2011; 14: 209–21p.

D.X. Zhang, D.D. Gutterman. Mitochondrial reactive oxygen speciesmediated signaling in endothelial cells, Am J Physiol. 2007; 292: H2023–31p.

J.M. Li, A.M. Shah. Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology, Am J Physiol. 2004; 287: R1014–30p.

P. Viza´n, S. Sa´nchez-Tena, G. Alcarraz-Viza´n, M. Soler, R. Messeguer, M.D. Pujol, W.N. Lee, M. Cascante. Characterization of the metabolic changes underlying growth factor angiogenic activation: identification of new potential therapeutic targets, Carcinogenesis. 2009; 30: 946–52p.

Y. Okuno, A. Nakamura-Ishizu, K. Otsu, T. Suda, Y. Kubota. Pathological neoangiogenesis depends on oxidative stress regulation by ATM, Nat Med. 2012; 18: 1208–16p.

R.M. Tuder, L.A. Davis, B.B. Graham. Targeting energetic metabolism: a new frontier in the pathogenesis and treatment of pulmonary hypertension, Am J Respir Crit Care Med. 2012; 185: 260–6p.

R.F. Morrison, E.R. Seidel. Vascular endothelial cell proliferation: regulation of cellular polyamines, Cardiovasc Res. 1995; 29: 841–7p.

N. Sawada, A. Jiang, F. Takizawa, A. Safdar, A. Manika, Y. Tesmenitsky, K.T. Kang, J. Bischoff, H. Kalwa, J.L. Sartoretto, et al. Endothelial PGC-1alpha mediates vascular dysfunction in diabetes, Cell Metab. 2014; 19: 246–58p.

M. Brownlee. Biochemistry and molecular cell biology of diabetic complications, Nature. 2001; 414: 813–20p.

Goldin, J.A. Beckman, A.M. Schmidt, M.A. Creager. Advanced glycation end products: sparking the development of diabetic vascular injury, Circulation. 2006; 114: 597–605p.


  • There are currently no refbacks.