Open Access Open Access  Restricted Access Subscription or Fee Access

Physiochemical Mechanism Associated with Drought Tolerance in Tomato

Gyanendra Kumar Rai, Monika Singh, Pradeep K. Rai, Sunil Kumar Rai

Abstract


Abiotic stresses are one of the key limitations to global crop production and food security. Among the abiotic stresses, drought is one of the most vital factors that cause changes in morphological, biochemical, and physiological characteristics in plants, and consequently affects the growth and productivity of crops. The main purpose of the present study was to evaluate the effect of drought on physiological traits (ratio of root/shoot length, leaf area (cm2), relative water content (%), and electrolyte leakage (% conductivity), and biochemical traits (ascorbic acid content (mg/100g), total carotenoids (mg/100g), total chlorophyll content, proline, sugar content) in 15 tomato genotypes and to identify drought stress tolerant genotypes. The results confirmed that there are significant variations in physiological and biochemical parameters among 15 tomato genotypes under drought and irrigated conditions. Among the 15 genotypes, EC-317-6-1 and WIR-4360 were found highly tolerant of drought in comparison to others while Kashi Amrit and Kashi Sharad were found susceptible to drought conditions. The performance of tomato genotypes used in the study showed significant differences in all studied traits, suggesting that they could be taken into account when selecting for drought tolerance. EC-317-6-171 and WIR-4360 had good yield performance under drought conditions. Moreover, results indicate that biochemical and physiological parameters are more useful for the screening of drought-tolerant tomato genotypes.

Keywords


Tomato, drought, morphology, physiology, ascorbic acid, proline

Full Text:

PDF

References


Rai Gyanendra Kumar, Kumar Rajesh, Singh J., Rai P. K. and Rai S.K. 2011 Peroxidase, Polyphenol oxidase activity, Protein profile and Phenolics content in tomato cultivars tolerant and susceptible to fusariumoxyporumf.sp.lycopersici. Pakistan Journal of Botany, 43(6): 2987-2990.

Rick, C. M., 1978. The tomato. Sci Am. 239: 76-87.

Rai, G. K., Kumar, R., Singh, A. K., Rai, P. K., Rai, M., Chaturvedi, A. K. and Rai, A. B. 2012.Changes in antioxidant and phytochemical properties of tomato (lycopersicon esculentum mill.) under ambient condition. Pakistan Journal of Botany. 44(2): 667-670.

Smirnoff, N., Cumbes, Q. J., 1989. Hydroxyl radical scavenging activity of compatible solutes. Phytochem. 28: 1057-1060.

Rai Gyanendra. Kumar, Kumar Rajesh, Kumar Ranjeet R., and DograSheetal (2014) Free radicals scavenging- Antioxidant phytochemicals in cherry tomato (Solanumlycopersicon Var. Ceresiforme (Dunal) A. Gray.).

Bangladesh J. Bot. 43(3): 255-260.

Singh, J., Rai, M., Kumar, R., Verma, A., Rai, G. K., 2007. Genotyping variation and hierarchical clustering of tomato (Lycopersicon esculentum Mill.) based on morphological and biochemical traits. Vegetable Sciences. 34(1): 40-45

FAOSTAT 2014. World Production (Tonnes) of Tomatoes in 2013.

States Departments of Horticulture and Agriculture. Horticulture Statistics Division Department of Agriculture, Cooperation & Farmers Welfare Ministry of Agriculture & Farmers Welfare Ministry of Agriculture & Farmers Welfare Government of India New Delhi. Monthly Report Tomato, January 2018.

Lesk, C., Rowhani P., Ramankutty N., 2016. Influence of extreme weather disasters on global crop production. Nature. 529. 84-87.

Foyer, C. H., Descourvieres, P., Kumar, K. J., 1994. Protection against oxygen radicals: an important defense mechanism studied in transgenic plants, Plant Cell Environment, 17: 507-523.

Rai Gyanendra Kumar, Mahajan Ojesvi, Kotwal Sonalika, Banoo Muneeba, Singh Monika, Rai Pradeep Kumar and Sinha B.K. (2018) Ascorbate Peroxidase and Superoxide Dismutasegenes Alteration in Tomato (Solanum lycopersicum Mill) under Drought Stress Condition. International Journal of Current Microbiology and Applied Sciences, 7(8): 3670-3681.

Nanjo, Y., Nouri, M. Z., Komatsu, S., 2011. Quantitative proteomics analyses of crop seedlings subjected to stress conditions; a commentary. Phytochemistry. 72: 1263–1272.

Kusvuran, S., Dasgan H.Y., 2017. Drought induced physiological and biochemical responses in solanum lycopersicum genotypes differing to tolerance. Acta Sci. Pol. Hortorum Cultus. 16(6): 19–27.

Sanchez-Rodriguez E, Rubio-Wilhelmi M. M., Cervilla, L. M., Blasco B, R., ios J. J., Rosales, M. A., Romero, L., Ruiz J. M., 2010. Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Sci. 178: 30-40.

Statistical Yearbook of the Food and Agricultural Organisation for the United Nations. 2013.

Ben Hamed, K., Castagna, A., Salem, E., Ranieri, A., Abdelly, C. 2007. Sea fennel (Crithmum maritimum L.) under salinity conditions: a comparison of leaf and root antioxidant responses. Plant Growth Regulation. 53(3): 185-194.

Premachandra, G. S., Saneoka, H., Fujita, K., Ogata, S. 1990. Water stress and potassium fertilization in field grown maize (Zea mays L.): effects of leaf water relations and leaf rolling. Journal of Agronomy and Crop Science. 170: 195–201.

Sairam R. K. 1994. Effect of moisture stress on physiological activities of two contrasting wheat genotypes. Indian Journal of Experimental Biology. 32: 594–597.

Sairam, R. K, Tyagi, A, 2004. Physiology and molecular biology of salinity stress tolerance in plants. Current Science. 86 (3): 407-421.

Ranganna, S., 1977. Manual for Analysis of Fruit and Vegetable Products. Tata McGraw Hill Publishing Company Limited. New Delhi. 634.

Thimmaiah, S. K., 1999. Standard method of Biochemical analysis. Kalyani Publisher, New Delhi.

Bates, L. S., Waldren R. P., Teare I. D., 1973. Rapid determination of free proline for water stress studies. Plant Soil. 39: 205-207.

Cerning J., Guilhot. J., 1973. Changes in carbohydrate composition during maturation of wheat and barley kernel. Cereal Chem. 50:

-224.

Yemm, E. W., Willis. A. J., 1954. The estimation of carbohydrates in plant extracts by anthrone.

Solankey, S. S., Singh R. K., Baranwal. D. K., Genetic Expression of Tomato for Heat and Drought Stress

Manna, M., Paul, A., 2012. Studies on genetic variability and characters association of fruit quality parameters in tomato. HortFlora Research Spectrum. 1(2): 110-116.

Naz, S., Zafrullah, A., Shahzadhi, K., Munir, N., 2013. Assessment of genetic diversity within germplasm accessions in tomato using morphological and molecular markers. The Journal of Animal & Plant Sciences. 23(4): 1099-1106.

Nwosu, D. J., Onakoya, O. A., Okere, A. U., Babatunde, A. O. and Popoola, A. F. 2014. Genetic Variability and Correlations in Rain fed Tomato (Solanum spps.) Accessions in Ibadan, Nigeria. Greener Journal of Agricultural Sciences. 4(5): 211-219.

Jaleel, C. A., Riadh, K., Gopi, R., Manivannan, P., Ines, J., Al-Juburi, H. J., Panneerselvam, R., 2009. Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol. Plant. 31 (3), 427-436.

Keyvan, S. 2010. The effects of drought stress on yield, relative water content, proline, soluble carbohydrates and chlorophyll of bread wheat cultivars. J. Amin. Plant Sci. 8(3): 1051-1060.

Rahman, S. M. L., Mackay, W. A., Quebedeaux, B., Nawata, E., Tetsuo, S., Mesbahuddin, A. S. M., 2000. Superoxide Dismutase Activity, Leaf Water Potential, Relative Water Content, Growth and Yield of a Drought-Tolerant and a Drought-Sensitive Tomato (Lycopersiconesculentum Mill.) Cultivars. Subtropical Plant Science. 54:16-22.

Reddy, B. R., Reddy, M. P., Begum, H., Sunil, N., 2013. Genetic diversity studies in tomato (Solanum lycopersicum L.). Journal of Agriculture and Veterinary Science. 4(4): 53-55.

Singh, J., Rai, G. K., Upadhyay, A. K., Singh, K. P., 2003. Antioxidents phytonutrients in tomato (Lycopersicon esculentum Mill.). Indian Journal of Agricultural Sciences, 74(1): 1-4.

Sharma, S., Mahajan, R., Bajaj, K. L., 1996. Biochemical evaluation of some tomato varieties. Vegetable Science. 23(1): 42-7.

Tsao, C. S., 1997. An overview of ascorbic acid chemistry and biochemistry. (In) Packer, L. and Fuch, J. (eds). Vitamin C in health and diseases. Marcal Dekker, New York.

Delamere, N. A., 1996. Ascorbic acid and the eye sub cell. Journal of Biochemistry. 25: 313-329.

Raffo, A., Leonardi, C., Fogliano, V., Ambrosino, P., Salucci, M., Gennaro, L., Bugianesi, R., Giuffrida, F. and Quaglia, G. 2002. Nutritional value of cherry tomatoes (Lycopersiconesculentum Cv. Naomi F1) harvested at different ripening stages. Journal of Agricultural Food Chemistry. 50(22): 6550-6556.

Abdul-Hammed, M., Oke, M. O., Bolarinwa, I.F., 2015. Carotenoid accumulation pattern and nutritional indices of Cherry-Nasmata and Var-10 tomato varieties. International Food Research Journal. 22(2): 761-767.

Kallo, G., Rai, M., Singh, J., Verma, A., Kumar, R., Rai G. K., 2005. Morphological and biochemical variability in vegetable pea (Pisum sativum L). Veg Sci. 32: 19-23.

Sapeta, H., Costa, J.M., Lourenco, T., Maroco, J., Van der Linde, P., Oliveira, M.M. 2013. Drought stress response in Jatropha curcus: growth and physiology. Environ. Exp. Bot. 85: 76-84.


Refbacks

  • There are currently no refbacks.