Open Access Open Access  Restricted Access Subscription or Fee Access

Insight into Research and Studies on Botrytis Cinerea: Control and Analysis

Sunil Kulkarni


Agriculture and agriculture-based industries are backbone of the Indian economy. Crop cultivation in the rural area has become challenging task due to competition in terms of cost and quality. Increasing the yield of the crop by using different modern techniques has become the crucial part of research in this field. Use of the fungicides is one of the important aspects of the modern agricultural practices. Plants such as grapes, raspberries, strawberries are very important and profitable as they are raw materials for most widely consumed drink across the world (alcohol via wine). It also has medicinal value. These crops are cultivated in confined atmosphere to get the profit. The climatic conditions and soil properties are manipulated for this purpose. The disadvantage of this manipulation is that reduced temperature and change in humidity causes growth of undesirable species and diseases in the plants. The most common among these species is the fungi Botrytis cinerea. Botrytis blight is one important disease caused due to botrytis cinerea in onion, flower and fruit crops. Many Crops are affected adversely due to Botrytis cinerea (B. cinerea). This review is aimed at summarizing and discussing the investigations carried out on analysis and control of this fungi in crops of economic importance.

Full Text:



Anco, D. and Ellis, M., 2011. Fruit rots of blueberry: Alternaria, Anthracnose, and Botrytis. The Ohio State University Extension, 3213, pp.1-2.

Chilvers, M.I. and du Toit, L.J., 2006. Detection and identification of Botrytis species associated with neck rot, scape blight, and umbel blight of onion. Plant Health Progress, 7(1), p.38.

Jeffory Schraufnagel, J., Hudelson B.:, Gray Mold(Botrytis Blight). Wisconsin Garden Facts. 1, (2004), pp.1-1

Hansen, M.A.:, Botrytis Blight of Peony. Communications and Marketing, College of Agriculture and Life Sciences, Virginia Tech. 1, (2016), 450-602 (PPWS-93NP), Extension Plant Pathologist, Virginia state University.

Weber, R.W. and Entrop, A.P., 2011. Multiple fungicide resistance in Botrytis: a growing problem in German soft-fruit production. Fungicides, Book, 2, pp.45-60.

Hanna, B., Barbars, D., Piotr S.,: Inhibitory Effect of Pseudomonas spp. on the Development of Botrytis cinerea and Penicillium expansum. Plant Prote. Sc. 40, 128–134(2004)

Kim, J.O., Shin, J.H., Gumilang, A., Chung, K., Choi, K.Y. and Kim, K.S., 2016. Effectiveness of different classes of fungicides on Botrytis cinerea causing gray mold on fruit and vegetables. The plant pathology journal, 32(6), p.570-574.

Grabke, A., Fernández-Ortuño, D., Amiri, A., Li, X., Peres, N.A., Smith, P. and Schnabel, G., 2014. Characterization of iprodione resistance in Botrytis cinerea from strawberry and blackberry. Phytopathology, 104(4), pp.396-402.

Reglinski, T., Elmer, P.A.G., Taylor, J.T., Wood, P.N. and Hoyte, S.M., 2010. Inhibition of Botrytis cinerea growth and suppression of botrytis bunch rot in grapes using chitosan. Plant Pathology, 59(5), pp.882-890.

Mouekouba, L.D.O., Zhang, Z., Olajide, E.K., Wang, A. and Wang, A., 2013. Biological control of Botrytis cinerea in tomato leaves. International Proceedings of Chemical, Biological and Environmental Engineering (IPCBEE), 60, pp.64-68.

Hosen, M.I., Ahmed, A.U. and Islam, M.R., 2010. Physiological variability and in vitro antifungal activity against Botrytis cinerea causing botrytis gray mold of chickpea (Cicer arietinum L.). Spanish journal of agricultural research, 8(3), pp.750-756.

Van Rooi, C. and Holz, G., 2003. Fungicide efficacy against Botrytis cinerea at different positions on grape shoots. South African Journal of Enology and Viticulture, 24(1), pp.11-15.

Borges, Á.V., Saraiva, R.M. and Maffia, L.A., 2014. Key factors to inoculate Botrytis cinerea in tomato plants. Summa Phytopathologica, 40(3), pp.221-225.

Evenhuis, A. and Wanten, P.J., 2006. Effect of polythene tunnels and cultivars on grey mould caused by Botrytis cinerea in organically grown strawberries. Agriculturae Conspectus Scientificus, 71(4), pp.111-114.

Barbosa, A.C., Carmo, A.E.D., Graf, L., Tomaz, R., Souza, C.F.D., Mendes, J., Randi, M.A.F., Buchi, D. and Schadeck, R.J.G., 2006. Morphology and lipid body and vacuole dynamics during secondary conidia formation in Colletotrichum acutatum: laser scanning confocal analysis. Canadian journal of microbiology, 52(2), pp.117-124.

Collado, I.G., Sánchez, A.J.M. and Hanson, J.R., 2007. Fungal terpene metabolites: biosynthetic relationships and the control of the phytopathogenic fungus Botrytis cinerea. Natural product reports, 24(4), pp.674-686.

Cotoras, M., Garcı´a C., Mendoza L.:, Botrytis Cinerea Isolates Collected from Grapes Present Different Requirements for Conidia Germination. Mycologia, 101,287–295(2009).

Lucas, J., 1987. Spores on leaves: endogenous and exogenous control of development. In Fungal infection of plants. Symposium of the British Mycological Society (pp. 45-59). Cambridge University Press.

Aguayo, C., Riquelme, J., Valenzuela, P.D.T., Hahn, M. and Moreno, E.S., 2011. Bchex virulence gene of Botrytis cinerea: characterization and functional analysis. Journal of general plant pathology, 77(4), pp.230-238.

Adongo, J.O., Alice, W.N., Omolo, J.O., Cheplogoi, P.K. and Otaye, D.O., 2012. In Vitro Inhibition of Botrytis Cinerea-Causative Agent for Grey Mold by Crude Extracts of Basidiomycetes Fungi. Science Journal of Biotechnology, pp. 512.

Pratella, G. C., and Mari, M.:, Effectiveness of Trichoderma, Gliocladium, and Paecilomyces in Postharvest Fruit Protection. Postharvest Biol. Tech. 3(1), 49-56(1993).

Keinath, A. P., Fravel, D. R., and Papavizas,G. C., Potential of Gliocladium Roseum for Biocontrol of Verticillium Dahliae. Hytopathology. 81(6), 644-648(1991).

Sutton, J. C., and Peng, G.:, Manipulation and Vectoring of Biocontrol Organisms to Manage Foliage and Fruit Diseases in Cropping Systems. Annu. Rev. Phytopathol. 31, 473- 493(1993).

Sutton, J. C.:, Biological Control of Strawberry Diseases. Adv. Strawberry Res. 13,1-12(1994).

Sutton, J. C., Li D., Peng G., Yu H., Zhang P., Valdebenito-Sanhueza R.:, Gliocladium Roseum-A Versitile Adversary of Butrysis Ceneria in Crops. Plant Disease, 81(4), 316-328(1997).

Hawker, L., Hendy, R.J.:, An Electron Microscope Study of Germination of Conindia of Botrysis Cineria. J. Gen. Microbiology.33(1), 43-46(1963).

Pourreza, A., Lee, W., Reza, E., Schueller, J., Raveh,E. :, An Optimum Method for Real-Time Infield Detection of Huanglongbing Disease using A Vision Sensor. Comp. and Electr. in Agri. 110(1), 221-232(2015).

Qin, J., Chao, K., Kim, M.:, Investigation of Raman Chemical Imaging for Detection of Lycopene Changes in Tomatoes during Postharvest Ripening. J. Food Eng. 107(3-4), 277–288(2011).

Sankaran, S., Mishra, A., Ehsani, R., Davis, C. :, A Review of Advanced Techniques for Detecting Plant Diseases. Comp. and Electro. in Agri. 72(1), 1-13(2010).

Maxwell, K., Johnson, G. Chlorophyll Fluorescence, a Practical Guide. J. Exp. Bot. 51(345), 659-668(2000).

Larenas, M., Guzmán Estrada, R., Contreras J., C. Meriño Gergichevich C.:, Determination of the Fluorescence Spectrum of Botrytis cinerea Pers.:Fr. Isolated from Highbush Blueberry (Vaccinium corymbosum L.). Journal of Soil Plant Nutri. 15 (4), 938-948(2015).

Bragg, P. L., Govi G., Cannell, R., Q.:, A Comparison of Methods, Including Angled and Vertical Minirhizotrons for Studying Root Growth and Distribution In a Spring Oat Crop. Plant Soil, 73(3), 435–440(1983).

Barraclough, P. B.:, The Growth and the Activity of Winter Wheat Roots in the Field: Root Growth of High-Yielding Crops in Relation to Shoot Growth. J. agr. Sci. (Camb.) 103(2), 439–442(1984).

Kage, H., Stützel, H., A Simple Empirical Model for Predicting Development and Dry Matter Partitioning in Cauliflower (Brassica Oleracea L. Botrytis). Sci. Horticult. 80(1-2), 19–38(1999b).

Kage, H., Stützel, H., HUME: An Object Oriented Component Library for Generic Modular Modelling of Dynamic Systems in Modelling Cropping Systems. Eds. CSM Donatelli, F. Villalobos and JM Villar. pp 299–300(1999a). European Society of Agronomy,Lleida.

Hähndel, R., Isermann, K.:,Soluble Nitrogen and Carbon in the Subsoil in Relation to Vegetable Production Intensity. Acta Hortic.339, 193–206(1993).

Kage, H., Kochler M., Stützel, H., Root Growth of Cauliflower (Brassica oleracea L. botrytis) under Unstressed Conditions: Measurement and Modeling. Plant and Soil, 223(1-2),133–147(2000).

Fernández, R., Novo H.:, Proteomics of Fungal Plant Pathogens: the Case of Botrytis cinerea, Current Research, Techn. and Edu. Topics in App. Microbiology and Microbial Tech. 205-217(2010).

Ferna´ndez-Acero, F., Thomas Colby T., Anne Harzen A., Jesu´s Manuel Cantoral J., Schmidt, J., Proteomic Analysis of the Phytopathogenic Fungus Botrytis cinerea during Cellulose Degradation. Proteomics, 9(10), 2892–2902(2009).

Padliya, N. D., Cooper, B., Mass Spectrometry-based Proteomics for the Detection of Plant Pathogens. Proteomics, 6(14), 4069–4075(2006).

Ferna´ndez-Acero, F. J., Jorge, I., Calvo, E., Vallejo, I. et al.:, Proteomic Analysis of Phytopathogenic Fungus Botrytis cinerea as a Potential Tool for Identifying Pathogenicity Factors, Therapeutic Targets and for Basic Res. Arch. Microbiol. 187(3), 207–215(2007).

Ferna´ ndez-Acero, F. J., Carbu´, M., Garrido, C., Vallejo, I., Cantoral, J. M.:, Proteomic Advances in Phytopathogenic Fungi. Curr. Proteomics 2007, 4(2), 79–88(2007).

Dhingra, V., Gupta, M., Andacht, T., Fu, Z. F., New Frontiers in Proteomics Research: a Perspective. Int. J. Pharm. 299(1-2), 1–18(2005).

Myung, K., Hamilton-Kemp, T. R., Archbold, D. D.:, Interaction with and Effects on the Profile of Proteins of Botrytis cinerea by C6 Aldehydes. J. Agric. Food Chem. 55(6), 2182–2188(2007).

Tournu, H., Serneels, J., Van Dijck, P.:, Fungal Pathogens Research: Novel and Improved Molecular Approaches for the Discovery of Antifungal Drug Targets. Curr. Drug Targets, 6(8), 909–922(2005).

Bar-Nun, N., L’Hyvernay, A., Donèche, B., Mayer, M., Changes in mycelial structure of Botrytis cinerea Induced by Removal of the Glucan Matrix, Int. J. Vine and Wine Sci.. 41(3)149-153(2007).

Williamson, B., Tudzynski, B., Tudzynski, P. and Van Kan, J.A.:, Botrytis cinerea: The Cause of Grey Mould Disease. Molecular Plant Path. 8(5),561-580(2007).

Giraud, T., Fortini, D., Levis, C., Lamarque, C., Leroux, P., LoBuglio, K. and Brygoo, Y.:, Two Sibling Species of the Botrytis cinerea Complex, Transposa and Vacuma, Are Found in Sympatry on Numerous Host Plants. Phytopathology, 89(10), 967-973(1999).

Diolez, A., Marches, F., Fortini, D. and Brygoo, Y.:, Boty, a Long-Terminal-Repeat Retroelement in the Phytopathogenic Fungus Botrytis cinerea. App. and Env. Microbio. 61(1), 103-108(1995).

Levis, C., Fortini, D. and Brygoo, Y., Flipper, a Mobile Fot1-Like Transposable Element in Botrytis cinerea. Molecular and General Genetics. 254(6), 674-680(1997).


  • There are currently no refbacks.