Open Access Open Access  Restricted Access Subscription or Fee Access

Photonic Crystals – A Review

S. Sreeremya, M. Flory Shobana

Abstract


Photonic crystals are periodically arrayed electromagnetic media, commonly having possessing photonic band gaps: ranges of frequency in which light cannot propagate through the structure. This periodicity, where the length scale is proportional to the wavelength of light in the band gap, is the electromagnetic analogue of a crystalline atomic lattice, where the latter acts on the electron wave function to make the familiar band gaps, semiconductors, and so on, of solid-state physics. The study of photonic crystals is typically governed by the Bloch-Floquet theorem, and intentionally introduced defects in the crystal (analogous to electronic dopants) give rise to localized electromagnetic states: linear waveguides and point-like cavities.

Keywords: band gaps, electromagnetic, lattice, physics, photonic crystals

REFERENCES
[1] M.F. Yanik, W. Suh, Z. Wang, S. Fan. Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency, Phys Rev Lett. 2004; 93: 233903p.
[2] M.F. Yanik, S. Fan. Stopping light all optically. Phys. Rev. Lett. 92, 083901p (2004).
[3] J.E. Sipe. Vector k p approach for photonic band structures, Phys Rev E. 2000; 62: 5672–7p.
[4] S.M. Saltiel, Y.S. Kivshar. All-optical deflection and splitting by second-order cascading, Opt Lett. 2002; 27: 921–3p.
[5] S. Saltiel, Y.S. Kivshar. Phase matching in nonlinear χ (2) photonic crystals, Opt Lett. 2000; 25: 1204–6p.
[6] F. Raineri, G. Vecchi, C. Cojocaru, A.M. Yacomotti, C. Seassal, X. Letartre, P. Viktorovitch, R. Raj, A. Levenson. Appl Phys Lett. 2005; 86: 091111p.
[7] F. Raineri, C. Cojocaru, R. Raj, P. Monnier, A. Levenson, C. Seassal, X. Letartre, P. Viktorovitch. Opt Lett. 2005; 30: 64p.
[8] F. Raineri, G. Vecchi, A.M. Yacomotti, C. Seassal, P. Viktorovitch, R. Raj, A. Levenson. Appl Phys Lett. 2005; 86: 011116p.
[9] M. Notomi. Waveguides, resonators and their coupled elements in photonic crystal slabs, Opt Express. 2004; 12: 1551–61p.
[10] Knight, J. Broeng, T.A. Birks, P. St. Russell. Science. 1998; 282: 1476p.
[11] Fan, P.R. Villeneuve, J.D. Joannopoulos, E.F. Schubert. High extraction efficiency of spontaneous emission from slabs of photonic crystals, Phys Rev Lett. 1997; 78: 3294p.
[12] A. Arie, A. Bahabad, N. Habshoosh. Nonlinear interactions in periodic and quasi-periodic nonlinear photonic crystals, to appear, In: Micro/Nano Engineering and Characterization of Ferroelectric Crystals for Applications in Photonics. P. Ferraro, S. Grilli, P. de Natale (eds.), Germany: Springer; 2008.
[13] B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, J.-M. Fedeli. Appl Phys Lett. 2006; 88: 081113P; Virtual J Nanoscale Sci Technol. 2006; 13(10).
[14] A. Arie, N. Habshoosh, A. Bahabad. Quasi phase matching in two-dimensional nonlinear photonic crystals, Opt Quant Electron. 2007; 39: 361–75p.

Full Text:

PDF


DOI: https://doi.org/10.37628/ijpb.v4i1.266

Refbacks

  • There are currently no refbacks.