Open Access Open Access  Restricted Access Subscription or Fee Access

Biosensors to Detect Emerging Diseases in Modern World: A Review

Ritambhara Bhutani

Abstract


ABSTRACT

Worldwide biosecurity dangers like the spread of arising irresistible illnesses (i.e., avian flu, SARS, Hendra, Nipah, and so forth) and bioterrorism have produced critical interest lately. There is significant exertion coordinated towards comprehension and discrediting the expansion of irresistible sicknesses. Biosensors are an alluring apparatus which can possibly distinguish the episode of an infection or potentially sickness. Despite the fact that there is a large group of innovations accessible, either industrially or in the logical writing, the improvement of biosensors for the discovery of arising irresistible infections (emerging infectious diseases, EIDs) is as yet in its early stages. There is no uncertainty that the glucose biosensor, the quality chip, the protein chip, and so forth have all played are as yet assuming a critical part in observing different biomolecules. The motivation behind this audit is to introduce an outline of biosensors especially corresponding to EIDs. It gives a summary of the different kinds of biosensor advances that have been utilized to recognize EIDs, and depicts a portion of the innovations behind them as far as transduction and bioreceptor standards. Measurement and recognition of different pollutants in the biological system have gotten fundamentally significant in the previous few decades because of their comprehensive use in soil and sea-going environments. Biosensors have different imminent and existing applications in the location of these mixtures in the climate by transducing a sign. It likewise has huge applications in the recognition of various pollutants in the food business, ecological checking, infection finding, and so forth where solid and exact investigations are required. This part brings up a complete look on changed biosensors and their attributes, working standards, and their plans, in view of transduction types and natural segments. Endeavors have been made to sum up different uses of biosensors in food industry, ecological observing, drug conveyance frameworks, and clinical diagnostics and so forth.

 

Keywords: Biosensors, diseases, science, detectors, drugs

Cite this Article: Ritambhara Bhutani. Biosensors to Detect Emerging Diseases in Modern World: A Review. International Journal of Computational Biology and Bioinformatics. 2020; 6(2): 1–9p.


Full Text:

PDF

References


Clark LC, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci. 1962;102:29–45. doi: 10.1111/j.1749–6632.1962.tb13623.x, PMID 14021529.

Solaimuthu A, Vijayan AN, Murali P, Korrapati PS. Nano-biosensors and their relevance in tissue engineering. Curr. Opin. Biomed Eng. 2020;13:84–93.

Metkar SK, Girigoswami K. Diagnostic biosensors in medicine—a review. Biocatal Agric Biotechnol. 2019;17:271–83. doi: 10.1016/j.bcab.2018.11.029.

Lakshmipriya T, Gopinath SCB. An introduction to biosensors and biomolecules. In: Gopinath SCB, Lakshmipriya T, editors Nanobiosensors for biomolecular targeting. Vol. 1. Amsterdam, The Netherlands: Elsevier; 2019. p. 1–21.

Scholten K, Meng E. A review of implantable biosensors for closed-loop glucose control and other drug delivery applications. Int J Pharm. 2018;544(2):319–34. doi: 10.1016/j.ijpharm.2018.02.022, PMID 29458204.

Yazdi MK, Zarrintaj P, Bagheri B, Kim YC, Ganjali MR, Saeb MR. Nanotechnology-based biosensors in drug delivery. In: Mozafari M, editor; Series in Biomaterials Nanoengineered biomaterials for advanced drug delivery. Cambridge, MA: Woodhead Publishing; 2020. p. 767–79.

Griesche C, Baeumner AJ. Biosensors to support sustainable agriculture and food safety. TrAC Trends Anal Chem. 2020;128. doi: 10.1016/j.trac.2020.115906, PMID 115906.

Pandey A, Gurbuz Y, Ozguz V, Niazi JH, Qureshi A. Graphene-interfaced electrical biosensor for label-free and sensitive detection of foodborne pathogenic E. coli O157:H7. Biosens Bioelectron. 2017;91:225–31. doi: 10.1016/j.bios.2016.12.041, PMID 28012318.

Cesewski E, Johnson BN. Electrochemical biosensors for pathogen detection. Biosens Bioelectron. 2020;159:112214. doi: 10.1016/j.bios.2020.112214.

Guliy OI, Zaitsev BD, Larionova OS, Borodina IA. Virus detection methods and biosensor technologies. Biophysics. 2019;64(6):890–7. doi: 10.1134/S0006350919060095.

Farooq U, Yang Q, Ullah MW, Wang S. Bacterial biosensing: recent advances in phage-based bioassays and biosensors. Biosens Bioelectron. 2018;118:204–16. doi: 10.1016/j.bios.2018.07.058, PMID 30081260.

Cheng MS, Ho JS, Tan CH, Wong JPS, Ng LC, Toh CS. Development of an electrochemical membrane-based nanobiosensor for ultrasensitive detection of dengue virus. Anal Chim Acta. 2012;725:74–80. doi: 10.1016/j.aca.2012.03.017, PMID 22502614.

Sharma A, Sharma N, Kumari A, Lee H-J, Kim T, Tripathi KM. Nano-carbon based sensors for bacterial detection and discrimination in clinical diagnosis: A junction between material science and biology. Appl Mater Today. 2020;18. doi: 10.1016/j.apmt.2019.100467, PMID 100467.

Rai M, Gade A, Gaikwad S, Marcato PD, Durán N. Biomedical applications of nanobiosensors: the state-of-the-art. J Braz Chem Soc. 2012;23:14–24. doi: 10.1590/S0103–50532012000100004.

Zhao VXT, Wong TI, Zheng XT, Tan YN, Zhou X. Colorimetric biosensors for point-of-care virus detections. Mater Sci Energy Technol. 2020;3:237–49. doi: 10.1016/j.mset.2019.10.002, PMID 33604529.

Stringer RC, Schommer S, Hoehn D, Grant SA. Development of an optical biosensor using gold and quantum dots for the detection of Porcine Reproductive and Respiratory Syndrome Virus. Sens Actuators B. 2008;134(2):427–31. doi: 10.1016/j.snb.2008.05.018.

Dell’Atti D, Zavaglia M, Tombelli S, Bertacca G, Cavazzana AO, Bevilacqua G, Minunni M, Mascini M. Development of combined DNA-based piezoelectric biosensors for the simultaneous detection and genotyping of high-risk human Papilloma Virus strains. Clin Chim Acta. 2007;383(1–2):140–6. doi: 10.1016/j.cca.2007.05.009, PMID 17573061.

Du K, Cai H, Park M, Wall TA, Stott MA, Alfson KJ, Griffiths A, Carrion R, Patterson JL, Hawkins AR, Schmidt H, Mathies RA. Multiplexed efficient on-chip sample preparation and sensitive amplification-free detection of Ebola virus. Biosens Bioelectron. 2017;91:489–96. doi: 10.1016/j.bios.2016.12.071, PMID 28073029.

Hu Y, Li H, Li J. A novel electrochemical biosensor for HIV-related DNA detection based on toehold strand displacement reaction and cruciform DNA crystal. J Electroanal Chem. 2018;822:66–72. doi: 10.1016/j.jelechem.2018.05.011.

Seo SE, Tabei F, Park SJ, Askarian B, Kim KH, Moallem G, Chong JW, Kwon OS. Smartphone with optical, physical, and electrochemical nanobiosensors. J Ind Eng Chem. 2019;77:1–11. doi: 10.1016/j.jiec.2019.04.037.

Monošík R, Stred’anský M, Šturdík E. Application of electrochemical biosensors in clinical diagnosis. J Clin Lab Anal. 2012;26(1):22–34. doi: 10.1002/jcla.20500, PMID 24833531.

Mobed A, Baradaran B, de la Guardia Mdl, Agazadeh M, Hasanzadeh M, Rezaee MA, Mosafer J, Mokhtarzadeh A, Hamblin MR. Advances in detection of fastidious bacteria: from microscopic observation to molecular biosensors. TrAC Trends Anal Chem. 2019;113:157–71. doi: 10.1016/j.trac.2019.02.012.

Petrosova A, Konry T, Cosnier S, Trakht I, Lutwama J, Rwaguma E, Chepurnov A, Mühlberger E, Lobel L, Marks RS. Development of a highly sensitive, field operable biosensor for serological studies of Ebola virus in central Africa. Sens Actuators B Chem. 2007;122(2):578–86. doi: 10.1016/j.snb.2006.07.005, PMID 32288238.

Encarnação JM, Rosa L, Rodrigues R, Pedro L, da Silva FA, Gonçalves J, Ferreira GN. Piezoelectric biosensors for biorecognition analysis: application to the kinetic study of HIV-1 Vif protein binding to recombinant antibodies. J Biotechnol. 2007;132(2):142–8. doi: 10.1016/j.jbiotec.2007.04.010, PMID 17566584.

Sitdikov RA, Wilkins ES, Yates T, Hjelle B. Detection of Hantavirus using a new miniaturized biosensor device. J Appl Res. 2007;7:22.

Ionescu RE. Biosensor platforms for rapid detection of E. coli bacteria. In: Samie A, editor Recent advances on physiology, pathogenesis and biotechnological applications. London, UK: IntechOpen; 2017.

Malvano F, Pilloton R, Albanese D. A novel impedimetric biosensor based on the antimicrobial activity of the peptide nisin for the detection of Salmonella spp. Food Chem. 2020;325:126868. doi: 10.1016/j.foodchem.2020.126868.

Chao J, Zhu D, Zhang Y, Wang L, Fan C. DNA nanotechnology-enabled biosensors. Biosens Bioelectron. 2016;76:68–79. doi: 10.1016/j.bios.2015.07.007, PMID 26212206.

Soni A, Surana RK, Jha SK. Smartphone based optical biosensor for the detection of urea in saliva. Sens Actuators B. 2018;269:346–53. doi: 10.1016/j.snb.2018.04.108.

Zhang H, Xue L, Huang F, Wang S, Wang L, Liu N, Lin J. A capillary biosensor for rapid detection of Salmonella using Fe-nanocluster amplification and smart phone imaging. Biosens Bioelectron. 2019;127:142–9. doi: 10.1016/j.bios.2018.11.042, PMID 30597432.

Roda A, Michelini E, Zangheri M, Di Fusco M, Calabria D, Simoni P. Smartphone-based biosensors: A critical review and perspectives. TrAC Trends Anal Chem. 2016;79:317–25. doi: 10.1016/j.trac.2015.10.019.

Choi C. Integrated nanobiosensor technology for biomedical application. Nanobiosens Dis Diagn. 2012;1:1–4. doi: 10.2147/NDD.S26422.

Srinivasan B, Tung S. Development and applications of portable biosensors. J Lab Autom. 2015;20(4):365–89. doi: 10.1177/2211068215581349, PMID 25878051.

Mehrotra P. Biosensors and their applications—a review. J Oral Biol Craniofac Res. 2016;6(2):153–9. doi: 10.1016/j.jobcr.2015.12.002, PMID 27195214.

Krejcova L, Michalek P, Rodrigo MM, Heger Z, Krizkova S, Vaculovicova M, Hynek D, Adam V, Kizek R. Nanoscale virus biosensors: state of the art. Nanobiosens Dis Diagn. 2015;4:47–66.

Malon RSP, Sadir S, Balakrishnan M, Córcoles EP. Saliva-based biosensors: noninvasive monitoring tool for Clinical Diagnostics. BioMed Res Int. 2014;2014:962903. doi: 10.1155/2014/962903.

Zhang W, Du Y, Wang ML. Noninvasive glucose monitoring using saliva nano-biosensor. Sens Bio Sens Res. 2015;4:23–9. doi: 10.1016/j.sbsr.2015.02.002.

Mishra RK, Rajakumari R Chapter 1. Nanobiosensors for biomedical application: present and future prospects. In: Mohapatra SS, Ranjan S, Dasgupta N, Mishra RK, Thomas S, editors Characterization and biology of nanomaterials for drug delivery. Amsterdam, The Netherlands: Elsevier; 2019. p. 1–23.

Aiello V, Fichera M, Giannazzo F, Libertino S, Scandurra A, Reins M, Sinatra F. Fabrication and characterization of the sensing element for glucose biosensor applications. In: Sensors and microsystems. Singapore: World Scientific Publishing; 2008.

Selvarajan S, Alluri NR, Chandrasekhar A, Kim SJ. Unconventional active biosensor made of piezoelectric BaTiO3 nanoparticles for biomolecule detection. Sens Actuators B. 2017;253:1180–7. doi: 10.1016/j.snb.2017.07.159.

Bhatnagar I, Mahato K, Ealla KKR, Asthana A, Chandra P. Chitosan stabilized gold nanoparticle mediated self-assembled gliP nanobiosensor for diagnosis of Invasive Aspergillosis. Int J Biol Macromol. 2018;110:449–56. doi: 10.1016/j.ijbiomac.

12.084, PMID 29253546.

Riu J, Giussani B. Electrochemical biosensors for the detection of pathogenic bacteria in food. TrAC Trends Anal Chem. 2020;126. doi: 10.1016/j.trac.2020.115863, PMID 115863.

Gupta R, Raza N, Bhardwaj SK, Vikrant K, Kim KH, Bhardwaj N. Advances in nanomaterial-based electrochemical biosensors for the detection of microbial toxins, pathogenic bacteria in food matrices. J Hazard Mater. 2021;401:123379. doi: 10.1016/j.jhazmat.2020.123379.

Zhao W, Xing Y, Lin Y, Gao Y, Wu M, Xu J. Monolayer graphene chemiresistive biosensor for rapid bacteria detection in a microchannel. Sens. Actuators rep. Vol. 2; 2020. PMID 100004.

Samanman S, Kanatharana P, Chotigeat W, Deachamag P, Thavarungkul P. Highly sensitive capacitive biosensor for detecting white spot syndrome virus in shrimp pond water. J Virol Methods. 2011;173(1):75–84. doi: 10.1016/j.jviromet.2011.01.010, PMID 21256870.

Huang Y, Xu J, Liu J, Wang X, Chen B. Disease-related detection with electrochemical biosensors: a review. Sensors (Basel). 2017;17(10):2375. doi: 10.3390/s17102375, PMID 29039742.

Fu Z, Lu YC, Lai JJ. Recent advances in biosensors for nucleic acid and exosome detection. Chonnam Med J. 2019;55(2):86–98. doi: 10.4068/cmj.2019.55.2.86, PMID 31161120.

Wang P, Menzies NW, Lombi E, Sekine R, Blamey FPC, Hernandez-Soriano MC, Cheng M, Kappen P, Peijnenburg WJ, Tang C, Kopittke PM. Silver sulfide nanoparticles (Ag2S-NPs) are taken up by plants and are phytotoxic. Nanotoxicology. 2015;9(8):1041–9. doi: 10.3109/17435390.2014.999139, PMID 25686712.

García-Aljaro C, Cella LN, Shirale DJ, Park M, Muñoz FJ, Yates MV, Mulchandani A. Carbon nanotubes-based chemiresistive biosensors for detection of microorganisms. Biosens Bioelectron. 2010;26(4):1437–41. doi: 10.1016/j.bios.2010.07.077, PMID 20729063.

Nosrati R, Dehghani S, Karimi B, Yousefi M, Taghdisi SM, Abnous K, Alibolandi M, Ramezani M. Siderophore-based biosensors and nanosensors; new approach on the development of diagnostic systems. Biosens Bioelectron. 2018;117:1–14. doi: 10.1016/j.bios.2018.05.057, PMID 29870901.

Hanif A, Farooq R, Rehman MU, Khan R, Majid S, Ganaie MA. Aptamer based nanobiosensors: promising healthcare devices. Saudi Pharm J. 2019;27(3):312–9. doi: 10.1016/j.jsps.2018.11.013, PMID 30976173.

Lei Y, Chen W, Mulchandani A. Microbial biosensors. Anal Chim Acta. 2006;568(1–2):200–10. doi: 10.1016/j.aca.2005.11.065, PMID 17761261.

Socorro-Leránoz AB, Santano D, Del Villar I, Matias IR. Trends in the design of wavelength-based optical fibre biosensors (2008–2018). Biosens Bioelectron. 2019;1. doi: 10.1016/j.biosx.2019.100015, PMID 100015.

Tran LD, Nguyen BH, Van Hieu N, Tran HV, Nguyen HL, Nguyen PX. Electrochemical detection of short HIV sequences on chitosan/Fe3O4 nanoparticle-based screen-printed electrodes. Mater Sci Eng C. 2011;31(2):477–85. doi: 10.1016/j.msec.2010.11.007.

Lazerges M, Bedioui F. Analysis of the evolution of the detection limits of electrochemical DNA biosensors. Anal Bioanal Chem. 2013;405

(11):3705–14. doi: 10.1007/s00216–012–6672–5, PMID 23338756.

Solanki PR, Patel MK, Kaushik A, Pandey MK, Kotnala RK, Malhotra BD. Sol–gel derived nanostructured metal oxide platform for bacterial detection. Electroanalysis. 2011;23(11):2699–708. doi: 10.1002/elan.201100351.


Refbacks

  • There are currently no refbacks.