Open Access Open Access  Restricted Access Subscription or Fee Access

Sponge Bioerosion – A Review

S. Sreeremya, M. Flory Shobana


The growth and maintenance of coral reefs is the result of an equilibrium between the deposition and the erosion of carbonate. An important part of the erosion process is of a biological nature and is termed bioerosion. In coral reefs, bioerosion is driven by an increased diversity of organisms but, generally, the dominant groups around the world are boring sponges. Such sponges can remove large percent of calcareous material.

Keywords: bioeroson, calcareous, coral reefs, sponge

[1] K.L. Acker, M.J. Risk. Substrate destruction and sediment production by the boring sponge Cliona caribbaea on Grand Cayman Island, J Sediment Res A. 1985; 55: 705–11p.
[2] R.P.M. Bak. The growth of coral colonies and the importance of crustose coralline algae and burrowing sponges in relation with carbonate accumulation, Neth J Sea Res. 1976; 10: 285–337p.
[3] E. Bautista-Guerrero, J.L. Carballo, J.A. Cruz-Barraza, H.H. Nava. New coral reef boring sponges (Hadromerida: Clionaidae) from the Mexican Pacific Ocean, J Mar Biol Assoc UK. 2006; 86: 963–70p.
[4] B. Calcinai, F. Azzini, G. Bavestrello, L. Gaggero, C. Cerrano. Excavating rates and boring pattern of Cliona albimarginata (Porifera: Clionaidae) in different substrata, In: Porifera Research: Biodiversity, Innovation and Sustainability. M.R. Custódio, G. Lôbo-Hajdu, E. Hajdu, G. Muricy (eds.), Rio de Janeiro: Série Livros 28, Museu Nacional; 203–10p.
[5] J.L. Carballo, J.A. Cruz-Barraza. Cliona microstrongylata, a new species of boring sponge from the Sea of Cortés (Pacific Ocean, México), Cah Biol Mar 2005; 46: 379–87p.
[6] J.L. Carballo, J.A. Cruz-Barraza, P. Gómez. Taxonomy and description of clionaid sponges (Hadromerida, Clionaidae) from the Pacific Ocean of Mexico, Zool J Linn Soc. 2004; 141: 353–97p.
[7] J.L. Carballo, E. Bautista-Guerrero, G.E. Leyte-Morales. Boring sponges and the modeling of coral reefs in the East Pacific Ocean, Mar Ecol Prog Ser. 2008; 356: 113–22p.
[8] J.R.M. Chisholm, J.P. Gattuso. Validation of the alkalinity anomaly technique for investigating calcification and photosynthesis in coral reef communities, Limnol Oceanogr. 1991; 36: 1232–9p.
[9] D.K. Fütterer. Significance of the boring sponge Cliona for the origin of fine grained material of carbonate sediments, J Sediment Res A. 1974; 44; 79–84p.
[10] P.W. Glynn, J.S. Ault. A biogeographic analysis and review of the far eastern Pacific coral reef region, Coral Reefs. 2000; 19: 1–23p.
[11] B. Jones. The role of microorganisms in phytokarst development on dolostones and limestones, Grand Cayman, British West Indies, Can J Earth Sci. 1989; 26: 2204–13p.
[12] C.R. Jones. The geology and mineral resources of Perlis, North Kedah and Langkawi Islands, Geol Surv Malaysia District Memoir. 1981; 17: 257p.
[13] M. Kázmér, D. Taboroši. Bioerosion on the small scale – examples from the tropical and subtropical littoral, Hantkeniana. 2012; 7: 37–94p.
[14] D. Kelletat. Notches, In: Encyclopedia of Coastal Science. M.L. Schwartz (ed.), Dordrecht: Springer; 2005, 727–30p.
[15] J. Laborel, F. Laborel-Deguen. Biological indicators of relative sea-level variations and of co-seismic displacements in the Mediterranean region, J Coast Res. 1994; 10(2): 395–415p.
[16] C.P. Lee. Palaeozoic stratigraphy, In: Geology of Peninsular Malaysia. C.S. Hutchison, D.N.K. Tan (eds.), Kuala Lumpur: University of Malaya and Geological Society of Malaysia, 2009, 55–86p.
[17] M.S. Leman. Batu kapur berusia perm di kepulauan langkawi, In: Warisan Geologi Langkawi. I. Komoo, C.A. Ali (eds.), Bangi: Lestari UKM Publication; 2003, 155–70p.
[18] M.S. Leman, K.A. Ghani, I. Komoo, N. Ahmad. Langkawi Geopark. Bangi: Lestari UKM Publication; 2007, 113p.
[19] C.A. Moses. Observations on coastal biokarst, Hells Gate, Lord Howe Island, Australia, Zeitschr Geomorphol. 2003; 47: 83–100p.
[20] C. Moses. Tropical rock coasts: cliff, notch and platform erosion dynamics, Prog Phys Geogr. 2013; 37: 206–26p.
[21] L.A. Naylor, H.A. Viles, N.E.A. Carter. Biogeomorphology revisited: looking towards the future, Geomorphology. 2002; 47: 3–14p.
[22] A.C. Neumann. Observations on coastal erosion in Bermuda and measurements of the boring rates of the sponge Cliona lampa, Limnol Oceanogr. 1966; 11: 92–108p.
[23] P.A. Pirazzoli. Sea-Level Changes: The Last 20,000 Years. Chichester: Wiley; 1996, 211p.
[24] K.A. Rasmussen, E.W. Frankenberg. Intertidal bioerosion by the chiton Acanthopleura granulata: San Salvador, Bahamas, Bull Mar Sci. 1990; 47(3): 680–95p.
[25] C.H.L. Schönberg, C.R. Wilkinson. Induced colonizationof corals by a clionid bioeroding sponge, Coral Reefs. 2001; 20: 69−76p.
[26] C.H.L. Schönberg, R. Suwa, M. Hidaka, W.K.W. Loh. Sponge and coral zooxanthellae in heat and light: preliminary results of photochemical efficiency monitored with pulse amplitude modulated fluorometry, Mar Ecol. 2008; 29: 247−58p.
[27] 27. Sipkema D, Snijders APL, Schroën CGPH, Osinga R, WijffelsRH (2004) The life and death of sponge cells. Biotechnol Bioeng 85: 239−247p.
[28] S.V. Smith, G.S. Key. Carbon dioxide and metabolism inmarine environments, Limnol Oceanogr. 1975; 20: 493−5p.
[29] H.M. Stoll, J. Ruiz-Encinar, J.I. Garcia-Alonso, Y. Rosenthal, C. Klaas, I. Probert. A first look at paleotemperature prospects from Mg in coccolith carbonate: cleaning techniques and culture measurements, Geochem Geophys Geosyst. 2001; 2: 1047p.
[30] A. Tribollet, S. Golubic. Reef bioerosion: agents andprocesses, In: Coral Reefs: An Ecosystem in Transition. Berlin: Springer; 2011a, 335−449p.
[31] A. Tribollet, M.J. Atkinson, C. Langdon. Effects of elevated pCO2 on epilithic and endolithic metabolism of reef carbonates, Global Change Biol. 12: 2200−8p. Effects of elevated pCO2 on dissolution of coral carbonates by microbial euendoliths, Global Biogeochem Cycles. 2006; 23: 1−7p.
[32] A. Tribollet, G. Radtke, S. Golubic. Bioerosion, In: Encyclopedia of Geobiology. J. Reitner, V. Thiel (eds.), Berlin: Springer; 2011b, 117−34p
[33] J.E.N.. Veron. Ocean acidification and coral reefs: an emerging big picture, Diversity. 2011; 3: 262−74p.
[34] A. Vecsei. Fore-reef carbonate production: development of a regional census-based method and first estimates, Palaeogeogr Palaeoclimatol Palaeoecol. 2001; 145: 185–200p.

Full Text:



  • There are currently no refbacks.